Requirements Eng (2002) 7:243-263
Ownership and Copyright
© 2002 Springer-Verlag London Limited

Requirements
Engineering

Requirements-Level Semantics and Model Checking of Object-

Oriented Statecharts

Rik Eshuis, David N. Jansen and Roel Wieringa
Department of Computer Science, University of Twente, Enschede, The Netherlands

In this paper we define a requirements-level execution
semantics for object-oriented statecharts and show how
properties of a system specified by these statecharts can
be model checked using tool support for model checkers.
Our execution semantics is requirements-level because it
uses the perfect technology assumption, which abstracts
from limitations imposed by an implementation. State-
charts describe object life cycles. Our semantics
includes synchronous and asynchronous communication
between objects and creation and deletion of objects.
Our tool support presents a graphical front-end to model
checkers, making these tools usable to people who are
not specialists in model checking. The model-checking
approach presented in this paper is embedded in an
informal but precise method for software requirements
and design. We discuss some of our experiences with
model checking.

Keywords:
Statecharts

Execution semantics; Model checking;

1. Introduction

Statecharts allow the specification of complex event-
driven behaviours, containing parallelism, event broad-
casting, state hierarchy, interrupts and non-determinism.
They have been used in structured analysis since the
mid-1980s [1,2] and in object-oriented analysis since the
early 1990s [3]. They take a central place in the UML
[4], where they can be used, among others, to specify
object life cycles.

Correspondence and offprint requests to: Rik Eshuis, Department of
Computer Science, University of Twente, PO Box 217, 7500 AE
Enschede, The Netherlands. Email: eshuis@cs.utwente.nl

Statecharts are powerful notations, and they have
proven to be an attractive means to specify behaviour.
But this very expressive power brings with it a host of
semantic issues that can decrease our ability to under-
stand the behaviour specified by means of statecharts.
This is a result of the large number of syntactic
combinations that can be made in statecharts, which
forces us to make a lot of semantic choices.

The issue is compounded by the fact that different
users of statecharts may make these choices differently.
Several years ago, von der Beeck [5] listed over 20
variants of statechart semantics in structural analysis
approaches, which all make these choices differently. A
single statechart in structured analysis can thus have
more than 20 different semantics. The number of
semantics actually in use has increased with every new
object-oriented method that incorporates statecharts. The
UML has not resolved this multiplicity. Reports from the
standardisation effort suggest that the final UML
semantics of statecharts will be one of the most complex
imaginable [6]. Moreover, the UML semantics contains
many open ends, which have to be filled in before
statecharts can be used.

This paper takes a route opposite to the UML, which
is aimed at simplicity and precision. We define a
lightweight version of statecharts that contains the
essential constructs of parallelism, state hierarchy and
state reactions and extend this with object-oriented
constructs for inter-statechart communication and for
object creation and deletion. We then define a
STATEMATE-like execution semantics for this, which is
formalised by means of a labelled transition system
(LTS). We implemented this semantics in our graphical
editing tool TCM [7], which allows the analyst to create
and edit a collection of formal and informal system
specifications. For some of the behaviour descriptions,

244

R. Eshuis et al.

X

Analyst

v

. Informat text Informal diagram
informal world 9

Informal requirement

formal world .
Formal text Formal diagrams

Path in diagram,

Formal requirement :
Sequence diagram

<
[~

TCM

Representation of the Semantics J

Model
checker

Fig. 1. Using TCM to combine formal and informal

including UML activity diagrams and simple statecharts,
TCM can generate a representation of their semantics
(Fig. 1). It can do this in the format required by several
model checkers such as SMV [8], NuSMV [9] and
Kronos [10]. The semantics can be represented as a
labelled transition system, or in other formats under-
standable by a model checker. The analyst can use the
model checker to check properties of the semantic
structure. The output of the model checker is fed back to
TCM, which presents it in a format understandable to the
analyst. The current status of the implementation is
discussed in more detail later in this paper.

The goal of this paper is to make model checking
available at the requirements level without forcing the
analyst to learn unnecessary details of a model checker.
We therefore combine our semantics with a tool and a
requirements engineering approach, explained in the
next section.

1.1. Integrating Formal and Informal
Specifications

In our approach, we emphasise the integration of formal
with informal specifications. In our terminology, a
notation is formal if symbol manipulation rules have
been defined for it that are sound with respect to an
intended meaning. A symbol manipulation rule, in turn,
is formal if it is defined purely in terms of the physical
properties of the symbol occurrences, and not in terms of
the meaning of the symbols. An informal notation has no
such formal manipulation rules. We assume that the

Q&

Temporal Logic Formula

specification techniques with model checking.

intended meaning with respect to which the manipula-
tion rules must be sound is described in terms of some
mathematical structure such as a labelled transition
system.

We distinguish formality from precision. A descrip-
tion is precise if it is to the point. ‘PRECISE denotes the
quality of exact limitation, as distinguished from the
vague, doubtful, inaccurate ... The idea of precision is
that of casting aside the useless and superfluous’ [11]. A
precise description can be informal, and a formal
description can be imprecise. Harel and Rumpe [12]
distinguish between the precision of a language and the
precision of statements in that language, but do not
distinguish between formality and precision as we do.

Examples of informal specifications that can never-
theless be precise are a mission statement, a function
refinement tree, system function descriptions and an
informal system event list. Examples of formal
specifications are a state transition table, a Z specifica-
tion, an entity relationship diagram or a statechart. The
formal and informal parts of a specification should
supplement each other. In general, only a part of the total
specification is formal.

A particular diagram may be interpreted informally
first and then reinterpreted formally later. One way of
working is that the analyst first describes a statechart
informally. TCM then interprets the informal statechart
formally, by attaching one particular semantics (namely
the requirements-level semantics explained below) to it,
and by interpreting the labels as strings that can be tested
on equality.

Requirements-Level Semantics Object-Oriented Statecharts

Now the question pops up whether the formalisation
done by TCM is in accordance with the intended
meaning the analyst attaches to a statechart. We here
assume that the analyst is willing to use the semantics
TCM uses; by using TCM with model checking, the
analyst can learn about the meaning that TCM attaches
to the model he specified, and change the model if some
unexpected errors occur.

1.2. Not Yet Another Method (NYAM)

Our approach to software requirements is not yet another
method, because it consists of elements from structured
and object-oriented analysis put together in a particular
way [13,14]. There is no recipe to be followed when
using these techniques, but there are many guidelines
that can help the engineer to find requirements and to
design a high-level architecture [14]. For the current
paper, two basic ideas in NYAM must be explained.

First, NYAM is goal-oriented. If the composition of
the system with its environment is intended to achieve
emergent properties E, then the requirements engineer
should look for assumptions 4 about the environment
and properties S of the system such that 4 and S jointly
entail E. This approach puts NYAM in the same class of
requirements methods as KAOS [15,16], the require-
ments reference approach of the Gunters, Jackson and
Zave [17,18] and, to some extent, SCR [19-21]. We call
the argument that the environment and the system jointly
assure the emergent properties the systems engineering
argument. Model checking can help us in a variety of
ways in giving this argument. One is to formalise 4, S
and E and then verify whether 4 A S |= E. Another is to
try to check whether S | E and use the counterexamples
to identify any missing assumptions 4 about the
environment needed to produce the argument. We will
illustrate this later.

Second, we classify software architecture design
decisions into two groups: those based upon software
requirements and upon properties of the external
environment, and those based upon the software
implementation platform. A software architecture moti-
vated in terms of the external environment and the
software requirements is a requirements-level architec-
ture. When we include in our design motivations
arguments based upon a particular implementation
platform, we get an implementation-level architecture.
An example of a requirements-level architecture is the
essential data flow diagram of McMenamin and
Palmer [22]. It represents the essential structure of the
system, stripped of all implementation considerations.
By proposing a requirements-level architecture for a
system, the requirements engineer says that any

245

implementation of the system must exhibit this
architecture. In this paper, our requirements-level
architectures will be object-oriented. We represent
them by a UML static structure diagram rather than by
a data flow diagram.

Our system specification S will take the form of a
specification of a collection of communicating objects,
to which we give a requirements-level semantics. This is
discussed next.

1.3. Requirement-Level Semantics

In a requirements-level semantics, the assumption is
made that the system under design has infinite resources
and can compute infinitely fast. McMenamin and Palmer
call this the perfect technology assumption [22] and we
borrow their terminology. It is implied by the perfect
synchrony hypothesis of Esterel, which says that the
response to an event occurs at the same time as the event
[23].

By making this assumption, the modeller does not
have to worry about implementation details, but instead
can focus on specifying a solution to the problem at
hand. STATEMATE [24] makes this assumption. By
contrast, in an implementation-level semantics the
focus is on implementing a design and the perfect
technology assumption is therefore dropped. The goal
now is that the implemented design meets the
requirements. The OMG UML semantics is an im-
plementation-level semantics [25]. Both a requirements-
level and an implementation-level semantics are useful,
but at different points in the design cycle. The
requirements-level semantics is useful when -early

Table 1. Differences between requirements and implementation-
level semantics

Requirements-level semantics Implementation-level semantics

Perfect technology Imperfect technology

Input is event set e Input is queue
System reacts to all events e System reacts to one
in input event in input (the first)
Event is responded to in e Event is responded to in
next step some subsequent step

Instantaneous communication e Non-instantaneous
communication

Communication may get lost,

or arrive at wrong destination

Many local clocks

Clocks may drift

e Action takes time

e Limited concurrency, i.e.
threads of control with
interleaving per thread
(one thread per active
object)

Communication arrives always

One global clock

No clock drift

Action is instantaneous
Unlimited concurrency

246

requirements need to be specified, whereas the im-
plementation-level semantics is useful when some
agreed-upon final design needs to implemented.

Our statechart semantics is intended to be used for
requirements specification. This differs from the use of
statecharts to describe implementation-level behaviour.
The differences are listed in Table 1. The OMG UML
semantics makes the assumptions marked by a bullet in
Table 1. Our semantics, like STATEMATE, makes all of
the assumptions in the left-hand column.

1.4. Structure of the Paper

In Section 2, we summarise the necessary syntax
definitions of UML statecharts. Next, in Section 3 we
present the requirements-level semantics for statecharts.
This is an informal but precise update of a semantics
defined formally in an earlier paper [26]. We begin with
a discussion of the design choices and define the basic
execution of a statechart. Then we define the execution
semantics of one statechart in terms of execution
algorithms. Next we extend that semantics with creation

Var:
ticket

)L Ready to sell

R. Eshuis et al.

and deletion action expressions and communication
between statecharts. In Section 4 we present a small
case study and show how different model checkers can
be used to verify different aspects of the design. We end
with a discussion and conclusions.

2. Statechart Syntax

We explain the syntax of statecharts informally. We
gave formal definitions in an earlier paper [26]. Figure 2
shows an example statechart. It models the behaviour of
a dialogue in which electronic railway tickets are sold to
travellers. The complete system this statechart is part of
is described in Section 4. Rounded rectangles represent
state nodes. Directed edges represent state transitions.
A statechart is a collection of state nodes, hierarchi-
cally related, and connected by directed edges. A state
node is called active if it is in the current execution
configuration, as explained in detail in Section 3.2. The
hierarchy relation is defined as follows: A state node s
can have sub-state nodes, called children of s. If s’ is a
child of s, then s is parent of s'. Children are visually

)

A
request to buy ticket

abort

Routefticket
information
requested

ﬁicket information
requested

Ticket type
unknown

. select ticket type
select ticket type v

Ticket type
known

.

Route information

select route
L4 select route

Route information

Route informatiom
requested

unkriown

known

/

make offer to sell ticket
Y

h 4

Payment

bank accepts payment/
ticket=create(Ticket)
send interface.show success message

donefin(Ticket type known) and|in{Route information known)]/

icket sale

T decline offer/
send interface.show abort message
offered
—

accept offer/
send clearing house request payment

\ bank refuses/

requested

send interface.show abort message

after(30 seconds)/
send interface show abort message

Fig. 2. Statechart for selling railway tickets dialogue.

Requirements-Level Semantics Object-Oriented Statecharts

represented by node containment (child is contained in
the super state node). The descendants of s are all the
children, children’s children and so on of s (the transitive
closure of children).

If node s has children, we call s a compound state
node. If s has no children, it is a basic state node. There
are two kinds of compound state nodes: AND and OR
state nodes. An AND state node denotes parallelism: If s
is an AND state node and s is active, then all its children
are active as well. The children of an AND state node are
separated by a dashed line. In Fig. 2, Route/Ticket
Information Requested is an AND state node. An
OR state node denotes exclusive choice: If s is an OR
state node and s is active, then exactly one of its children
is active as well. In Fig. 2, Ticket Information
Reqguested is an OR node. For technical reasons, we
require that the top-level state node of a statechart be an
OR node; we call this state node root. Node root is not
drawn.

The edge leaving a black dot points at an initial state
node. It is required that every OR node have an initial,
default state node. This initial state node denotes which
node is entered by default when the OR node is entered.
In Fig. 2, if or node Ticket information requested
is entered, then node Ticket type is unknown is
entered by default. A bull’s eye (not present in Fig. 2)
denotes a final state node. Contrasting to STATEMATE
statecharts and in accordance with UML statecharts, in
our semantics a final state node denotes local termination
of the corresponding OR node, not global termination of
the complete statechart.

A directed edge specifies a transition from one state
node (source) to another one (target). More than one
source and more than one target state node is allowed in
our formal semantics [26]; but to simplify the exposition,
we assume here every edge has a single source and a
single target. Edges can be labelled with an event
expression followed by a guard expression between
brackets followed by a slash and an action expression.
All these three expressions are optional.

Timeout expressions are special event expressions.
Following the UML we use two kinds of timeout
expressions: absolute and relative. An absolute timeout
expression references the current time. It is specified by
the UML when(cond) construct (e.g. when(time
=12:00:00h)). A relative timeout expression refer-
ences the time relative to some occasion, by default the
time the source state node is entered. It is specified by
the UML after(texp) construct. For example, in Fig. 2,
30 seconds after node Payment requested is entered,
timeout after(30 seconds) is generated.

Guard expressions are Boolean expressions that can
refer to local variables of the statecharts. The only guard
expression we use in Fig. 2, [in(Ticket type known)

247

and in(Route information known)], is true if and
only if both Ticket type known and Route
information known are active.

An action expression is a sequence of one or more
basic actions. A basic action can be, for example, an
assignment to a local variable, a create operation, a send
operation or a call operation. Send operations are always
asynchronous whereas call operations are always
synchronous. With both these operations, the receiver
must be explicitly denoted. For example, in Fig. 2, if
event accept offer occurs, a send operation send
clearing house.request payment is executed,
meaning that event request payment is sent to
object clearing house.

In order for the edge to be taken, its source must be
active, the event specified in the label must occur and the
guard expression in the label must be true. When the
edge is taken, first its source is left, so becomes inactive,
then the actions specified in the label are performed, and
finally the target state node is entered, so becomes
active.

3. Statechart Semantics

In this section we present our statechart semantics in
terms of execution algorithms. First we discuss the
choices we made in our statechart semantics in Section
3.1. Then, in Section 3.2, we define a step: a set of edges
that is concurrently taken. A step is taken in response to
changes in the environment. In Sections 3.3 and 3.4 we
define two different ways of executing a step. In the
clock-synchronous semantics, a step is executed when
the clock ticks. In the clock-asynchronous semantics, a
step is executed immediately when new events arrive.
Then the system becomes unstable and reacts infinitely
fast to become stable again. These two semantics are
borrowed from the STATEMATE semantics. The major
differences with the STATEMATE semantics are the
absence of a separate activity model in our semantics,
and the presence of synchronous and asynchronous
communication between statecharts, and of object
creation and deletion.

In the next sections, we focus on multiple statecharts.
In Section 3.5 we extend the semantics of the previous
sections with creation and deletion of objects with
statecharts, absent from the STATEMATE semantics. In
Section 3.6 we add synchronous and asynchronous
communication between different statecharts. STATE-
MATE only uses asynchronous communication. Formal
definitions of these semantics, without the execution
algorithms and the examples, are presented in a previous
paper [26].

248
3.1. Semantic Choices

Statecharts were introduced by Harel [1] to model the
behaviour of activities in the structured analysis
approach STATEMATE [24]. They have been adapted in
many object-oriented design notations, including the
UML [25], but with an informally or undefined
semantics that appears to be quite different from the
STATEMATE semantics. The actual difference between,
for example, the structured-analysis STATEMATE and the
object-oriented UML statecharts is blurred because the
STATEMATE semantics is defined at the requirements
level whereas the OMG semantics of UML is defined at
the implementation level.

In a previous paper, we have defined a formal
requirements-level semantics for UML-based statecharts
[26] that is an object-oriented version of the STATEMATE
semantics [24]. By defining this formal semantics, we
were able to classify the differences between structured
and OO semantics of statecharts in two dimensions:
structured versus OO models and requirements level
versus implementation level. In the introduction we have
discussed the difference between a requirements-level
and an implementation-level semantics.

Table 2 summarises the difference between our OO
semantics and the structured STATEMATE semantics
[24,27].

Firstly, object-oriented models encapsulate data
manipulation, control and data state into objects (as
operations, statecharts, attributes). Structured Yourdon-
style models separate them into data processes, control
processes and data stores, respectively. STATEMATE does
this too, but in addition it allows for local variables of
statecharts. STATEMATE models (as all other structured
analysis models) have separate activities where OO
models only know of data manipulation local to an
object. The absence of separate activities and the use of
true local variables considerably simplifies our semantics
w.r.t. the STATEMATE semantics. Secondly, to commu-
nicate information to a destination, objects in OO models
must use the identifier(s) of the destination(s) whereas
processes in structured models must use the identifiers of
the communication channels. As a consequence, com-

Table 2. Differences between Statemate and our OO semantics

STATEMATE activity chart
+ statechart

UML class diagram
+ statechart

Separation of data
state/process and control
state/process

Channel addressing
Broadcast communication
Instance level model

Encapsulation of data
state/process and control
state/process

|dentifier addressing
Point-to-point communication
Type-instance distinction

R. Eshuis et al.

munication in OO models is point-to-point, whereas in
structured models it is broadcast. Finally, object-oriented
models use the type—instance distinction, which is absent
from structured models. This means that in our
semantics we deal with dynamic creation and deletion
of instances.

Together, Tables 1 and 2 factorise the differences
between the STATEMATE and UML semantics of
statecharts into two groups: the differences between
structured and OO models and the difference between
requirements-level and implementation-level semantics.
On the other hand, Harel and Gery [28] state that the
main difference is that UML statecharts use run-to-
completion (RTC) whereas STATEMATE statecharts do
not. RTC, which was introduced in the statechart
semantics of ROOM [29], is one possible way to
maintain atomicity of transitions at the implementation
level. In an RTC semantics, an event can only be
processed, if processing of the precious event input has
completed (all triggered transitions have been comple-
tely taken). Sending an asynchronous message is
considered to be completed when the message is sent;
calling a synchronous operation is considered completed
when the called operation is completed, and this requires
maintaining a call stack. STATEMATE has no synchronous
communication and hence no call stack. Hence,
STATEMATE has RTC semantics in a trivial sense. In
our opinion, RTC is but a minor difference compared to
the differences identified by us. This difference is caused
by the fact that UML has synchronous communication
whereas STATEMATE has not. But this is not a particular
difference between structured analysis and object
orientation!

We now briefly sketch some design choices we have
made in defining a semantics. The following choices
have to be made for any semantics of statecharts,
regardless of semantic level or design paradigm (see also
von der Beeck [5]):

e We specify both a clock-synchronous and clock-
asynchronous semantics [24]. In the clock-synchro-
nous semantics, the system starts processing its input
only at the tick of the clock. In the clock-
asynchronous semantics, the system starts processing
its input as soon as it receives it. In the OMG
semantics of UML, this issue is ignored.

e In synchronous communication, the caller must wait
until the callee has finished processing the commu-
nication. In asynchronous communication, the caller
continues without waiting for the receiver to finish
processing the communication. STATEMATE only uses
asynchronous communication. We follow the UML in
defining a semantics for both. We show that in our

Requirements-Level Semantics Object-Oriented Statecharts

249

4 f

/counter:=0
elcounter:=counter+1
AN

Y
B——
J

[counter>0)/

counter:=counter-1
g

LY
@
-

(b)

Fig. 3. Example simulation of synchronisation state nodes with counters.

requirements-level semantics synchronous communi-
cation is only possible with a clock-asynchronous
semantics.

e Updates to variables are made at the end of a step, as
in STATEMATE. This way no inconsistent value can be
read.

e We assume a given priority order on transitions, and
do not commit ourselves to any particular one.
Possible priority orders are the STATEMATE one (a
higher-level transition has priority over a lower-level
one) and the UML one (a lower-level transition has
priority over a higher-level one). In Section 3.2 we
discuss the definition of priority in the UML and
STATEMATE.

e In the UML, a distinction is made between active and
passive objects. Active objects have computing
resources, passive objects do not. At the requirements
level, all objects have unlimited computing resources,
so there only are active objects.

e Like the UML [25], we allow no compound triggers,
no negated trigger events, and only a single entry and
single exit action.

e We allow for the case that the action expressions of a
transition contain sequence, interleaving and parallel
operators. The example action language that we use
only contains the sequence operator, but our semantics
can deal with the generalised case. Parallel actions
that interfere lead non-deterministically to different
possible end states.

The following UML statechart constructs could be added
to our requirements-level semantics, but to simplify the
exposition we omitted them:

e Deferred events. In the clock-synchronous semantics,
these can be simulated by regenerating an event as
often as it is to be deferred. They cannot be simulated
in the clock-asynchronous semantics, because regen-
erating an event in the clock-asynchronous semantics
would mean that the current state becomes unstable
and can never become stable.

e Parametrised events. We abstract away from para-
meters, since these may make the state space infinite,
thus making model checking considerably harder.

e A taxonomy for events. This is an abbreviation
mechanism that allows one to reduce the number of
transitions in a statechart. It does not add expressive
power.

e Activities (actions that take time). These can be
simulated by instantaneous start and finish events.

e Dynamic choice points. Adding this UML construct
would mean that a step is executed in two parts,
separated by the dynamic choice point. Dynamic
choice points can be simulated by adding an
intermediate state node.

e Synchronisation state nodes. These are pseudo state
nodes used to emulate a monitoring or semaphore
construct. We regard this to be an implementation-
level construct. It can be simulated using a counter (a
semaphore). An example elimination is presented in
Fig. 3.

e History states. These can be simulated by (re)defining
an entry function (see, for example, Damm et al. [27]).

3.2 Step Semantics

The states of a statechart are sets of state nodes. A state
of a statechart, called a configuration, is a set of state
nodes that satisfies the following constraints:

1. root is in the configuration.

2. If an OR node is in the configuration, exactly one of
its children is in the configuration as well.

3. If node is in the configuration, then its parent is in the
configuration as well.

4. If an AND node is in the configuration, all of its
children are in the configuration as well.

A set of state nodes N that has no inconsistent nodes can
be extended to a configuration in a canonical way. For
example, if N contains some OR node n but none of its
children, N can be turned into a configuration by adding
n’s default node to N. We call the resulting configuration

250

the default completion of N. Note that the original set
must not contain two nodes that have the same OR node
as parent; it is impossible to turn such a set into a
configuration.

A node is active if and only if it is part of the current
configuration.

A statechart can change configuration by taking edges.
It only changes configuration when changes in its
environment occur. We distinguish three kinds of
changes:

e An external event is a discrete change of some
condition in the environment. This change can be
referred to by giving a name to the change itself or to
the condition that changes:

o A named external event is an event that is given a
unique name.

e A value change event is an event that represents
that a Boolean condition has become true. Value
change events are represented by edge labels that
have a guard expression but no event expression.

e A temporal event is a moment in time to which the
system is expected to respond, i.e. some deadline. For
example, in Fig. 2 the label after(30 seconds)
denotes a deadline, after which the system is supposed
to react by moving to node Ready to sell. Temporal
events are generated by an internal clock in the
system. A formal definition can be found elsewhere
[26].

These three kinds of changes are also used in
STATEMATE and UML.

An edge is enabled and can be taken if and only if its
source node is in the configuration, the event specified in
the label occurs and the guard expression in the label is
true. If some part of the guard expression refers to a local
variable, the current value of this variable is substituted
for this variable.

Every edge e has a smallest OR node that contains
both the source and target state node as descendants. We
call this OR node the scope of e. For example, in Fig. 2
the edge with event label done has scope root, but the
edges with event labels select route have scope
Route Information Requested.

When the edge e is taken, all the descendants of the
scope of e are left (this includes the source), the actions
specified in the label are performed and the default
completion of the non-left states, extended by the target
state node, is entered. For example, in Fig. 2, if
the edge with event label done is taken, all the nodes
Route/Ticket Information Requested, Ticket
Information Requested,Route Information Re-
quested,Ticket type known, Route information
known will be left, but not root, and node Ticket sale
offered will be entered.

R. Eshuis et al.

Two enabled edges are inconsistent if their scopes are
equal or one of the scopes is a descendant of the other. In
that case, there is a state node that is left by both edges.
But since a state node is active at most once, it can be
left only once as well. So, inconsistent edges cannot be
taken simultaneously.

To choose between inconsistent edges, we assume
some priority relation on edges. The priority relation
must be a partial order. If one edge has priority over
another one, then if both are enabled and inconsistent,
the one with the higher priority is preferred.

Finally, we require that as many edges as possible are
taken. If we would not require this, some event might
have no effect. For example, suppose the configuration
contains both Ticket type unknown and Route
information unknown and both event select ticket
type and select route occur. Then both enabled edges
with the corresponding event label should be taken, not
just one. Therefore, a set of edges, rather than a single
edge, is taken.

Summarising, if in a given configuration a certain set
of input events occur, a set of edges is taken, called a
step, that satisfies the following constraints:

1. Enabledness. All edges in the step are enabled.

2. Consistency. All edges in the step are consistent with
each other.

3. Priority. If an enabled edge e is not in the step, then
there is another edge in the step that is inconsistent
with e and that has higher or the same priority.

4. Maximality. The step is maximal; i.e., if an enabled
edge is not part of the step, adding it either violates
constraint 2 or 3.

The above definition of a step is generic and
independent from whether we follow a structured or
object-oriented design approach. Both the STATEMATE
semantics and the OMG UML semantics satisfy it [26].
It is simpler than the STATEMATE definition of a step
[24,27] because like UML we have neither negative nor
compound events.

The UML and STATEMATE use different priority
definitions. We illustrate the differences by means of
the example statechart in Fig. 2. This also illustrates the
concept of step. If the current configuration is
{root,Route/Ticket Information requested,
Ticket Information Requested,Route Informa-
tion Requested,Ticket type known, Route
information known} and assume events select
ticket type and done happen simultaneously. The
two edges whose trigger event is select ticket type
and done are inconsistent and thus cannot be taken
simultaneously. So either the next configuration will be
the same as the current one (edge with event select
tickettype is chosen), or the next configuration will be

Requirements-Level Semantics Object-Oriented Statecharts

251

Let S:=¢F

while S C addToStep(S) do

do
pick an edge e with maximal priority from set addToStep(S);
let S: =S U {e};

endwhile

retun S

Fig. 4. nextstep(C,): algorithm to compute steps.

{root,Ticket sale offered} (edge with event done is
chosen). In the STATEMATE semantics, an edge e has
priority over another edge ¢’ if and only if e leaves more
state nodes than ¢’ [24]. So according to the STATEMATE
priority rule, the edge with event done has priority over
the edge with event select ticket type and the next
configuration will be {root,Ticket sale offered}. In
the OMG semantics, an edge e has priority over another
edge ¢’ if and only if e leaves less source state nodes than
€' [25]. So under the OMG semantics, the edge with
event select ticket type has priority over the edge
with event done and the next configuration will be the
same as the current configuration.

Finally, we present an algorithm for computing a step
in Fig. 4. We construct a step in an incremental way, by
adding edges that are consistent. To aid in this
construction, we define function addToStep as follows.
Suppose we have decided to take a set of edges E. The
function addToStep(E) gives us the edges that are
enabled and are consistent with E£. Denote the
configuration by C and the set of input events by /. In
Fig. 4 a non-deterministic algorithm mnextstep(C,I) is
presented that given C and [/ computes a step that
satisfies the above constraints 1-4.

A formal step definition and a proof that the algorithm
meets the step constraints can be found elsewhere
[26,30].

3.3. Basic Clock-Synchronous Execution

In the clock-synchronous semantics, the system waits
and collects changes of the environment in set / of input
events until the clock ticks; when the clock ticks the
system takes a step and thus reacts to the changes in the
environment that occurred since the previous tick of the

While true do
e Receive changes in / until clock ticks
e Execute a step (see figure 6)

Fig. 5. Execution algorithm for the clock-synchronous semantics.

Compute S=nextstep (C,/) using the algorithm in Fig. 4.
For every edge in S execute the actions (only updating
primed variables)

Compute the next configuration

Update C with the next configuration

Empty the input set /

Update the local variables with the values of their primed
counterparts

Switch some timers on and some timers off

N oo~ N

Fig. 6. Algorithm to execute a step.

clock. The system reaction is infinitely fast, since we
assume perfect technology. This behaviour is repre-
sented by the execution algorithm in Fig. 5.

The system reacts to changes (collected in input set /)
by taking a step. The definition of what happens when a
step is taken is the key part of the statechart semantics.
The algorithm for executing a step is shown in Fig. 6.
This algorithm is independent from the clock-synchro-
nous semantics; we will reuse it in the clock-
asynchronous semantics below.

The algorithm consists of seven parts. First, a step is
computed, using the nextstep algorithm in Fig. 4. Note
that for computing the step the value of some local
variables needs to be known in order to evaluate guard
conditions.

Second, the actions of the step are executed. As in the
STATEMATE semantics [24,27], updates are made to
primed variables. Each local variable has a primed
counterpart. By updating primed variables instead of
unprimed ones, we ensure that every action refers to the
same value of a variable during a step. Hence, a kind of
isolation property, similar to the notion used in database
theory, is enforced [31]. As in database theory, however,
it might be possible that by executing actions in different
orders, while respecting the ordering on the edge labels,
the same variable may have different possible end
values. (Such executions are not serialisable.) In
STATEMATE semantics, such executions are prohibited
and checked by the tool. In our semantics, like Damm et
al. [27], we just choose one possible ordering of actions
that satisfies the ordering on the edge labels.

Third, the next configuration is computed. If an edge
has as target an AND or OR node, or if it crosses the
boundary of a state node (a so-called inter-level
transition), the default completion of the non-left
states, extended by the target node, must be taken. For
example, if in Fig. 2 the current configuration is
{root,Ready to sell} and event request to buy
ticket occurs, then AND node Route/Ticket
Information Requested is entered. The scope
of the edge is root. The default completion of
{root,Route/Ticket Information Requested}

252

is {root,Route/Ticket Information Requested,-
Ticket Information Requested,Route Informa-
tion Requested,Ticket type unknown,Route
type unknown}, which is the next configuration.

Fourth, the configuration is updated with the next
configuration.

Fifth, the input set is emptied. By the perfect
technology assumption the system reaction takes zero
time, so no changes in the environment can have
occurred while the system is reacting to previous
changes.

Sixth, the unprimed variables are updated with the
values of their primed counterparts.

Seventh, some timers are switched off and some are
switched on. We use a dense time model: timers are
represented by reals. For each edge e with an after(zexp)
constraint, we introduce a timer that produces the desired
timeout. The timer is switched on and set to zero if and
only if the source of e is entered in the current step. The
timer can only increase if the system is not reacting to
some events. The timer is switched off if and only if the
source of e was part of the old configuration, but is no
longer part of the new configuration. If the timer reaches
texp, a timeout is generated automatically by the system
and added to the input set /. For example, in Fig. 2,
the timer for the edge with event label after(30
seconds) is started and set to zero when node
Payment requested becomes part of the configura-
tion. The timer is switched off when, for example, the
edge with event label bank accepts payment is
taken. Note that timeouts are not generated in system
reactions, but before system reactions, so as part of the
algorithm in Fig. 5, since timeouts are events that must
be in the input set before the subsequent reaction occurs.

3.4. Basic Clock-Asynchronous Execution

In the clock-asynchronous semantics, the system reacts
immediately to changes in the environment. Note that
more than one change can happen in the environment at
the same time. By the perfect technology assumption the
system reacts infinitely fast to these changes. Conse-
quently, since the system reacts immediately and
infinitely fast, the system reaction occurs simultaneously
with the events that triggered this reaction! If during the
subsequent step some events are generated and put in the
input set /, the system reacts immediately to these new
events in the next step. So, in this semantics, a sequence
of steps is taken, called a superstep, rather than a single
step as in the -clock-synchronous semantics. The
sequence of steps is stopped when there are no more
events in the input set and no edges are enabled. The
resulting state we call stable. Note that an edge with no

R. Eshuis et al.

While true do
e Receive changes (external event, temporal event)
e Execute a step (see Fig. 6)
e Repeat: if the resulting state is unstable, then execute a
step
Until the state is stable

Fig. 7. Execution algorithm for the clock-asynchronous semantics.

e/send self.f

n e/send self f n

flsend self.e
n flsend self.e

Fig. 8. Divergence in a statechart.

label is enabled by default if its source is active. So the
source of this edge can never be part of a stable state
configuration. The execution algorithm for this seman-
tics is presented in Fig. 7.

One disadvantage of this definition is that a superstep
may be infinite. In that case, we say the superstep
diverges. For example, if the statechart in Fig. 8 receives
either event e or f, a superstep is taken that does not
terminate. This behaviour is due to the assumption that
generated events cannot be sensed in the current step, but
only in the next step. In the fixpoint statechart semantics
defined by Pnueli and Shalev [32], the converse
assumption is made that generated events are sensed
immediately in the current step. However, as pointed out
by Leveson et al. [33], this assumption sometimes
leads to counterintuitive behaviour. STATEMATE, RSML
and UML all make the same assumption as we do,
namely that generated events can only be sensed in the
next step.

3.5. Creation and Deletion

Above we only defined a semantics for one single
statechart. In this (sub)section and the next, we define a
semantics for multiple statecharts. We use the following
notations and conventions. Assume a set of classes Class
and a set of object identifiers OID. Every class ¢ has a
statechart definition associated, whose root is identified
as c.root. Now that we have multiple objects instead of
one, we index the configuration C and input set / with the
object id’s. So for example C[id] denotes the configura-
tion C of object id. We assume that all variables used by
objects are unique. Variables can be made unique by
simply putting the object id in front. We denote the local

Requirements-Level Semantics Object-Oriented Statecharts

variables of an object id with Var(id). We assume that
every object can only update its own local variables in an
action, not variables of other objects. As before, every
variable v in Var(id) has a primed version, but now, in
addition, every set of input events /[id] also has a primed
counterpart I'[id], because we define communication
between statecharts. In the next paragraph we explain
why this is needed. We assume that there is a global
clock that represents the current time and that can be
referenced by every object.

The meaning of action expression refid:=create
(Class) is that an object of class Class is created with a
new identity that is assigned to variable refid. Action
expression destroy(id) means that object id is destroyed.

In order to give a semantics for creation and deletion
we make use of two predicates. Predicate Exists(id) is
true iff an object with identifier id exists. Predicate
Used(id) is true iff there exists or has existed an object
with identifier id. The obvious constraint holds that if
Exists(id) is true, Used(id) must be true as well. A new
object id can be created only if id has not been used
before: —Used(id). 1f object id is created, then it is
initialised by setting C[id] to the default completion of
{id.root}, setting I[id] to the empty set, and setting
Used(id) and Exists(id) to true.

An object id can be destroyed only if it exists:
Exists(id). 1f id is destroyed, predicate Exists(id)
becomes false.

3.6. Communication

3.6.1. Clock-Synchronous Semantics

In clock-synchronous semantics, we only allow asyn-
chronous communication (the send action). The reason is
that in synchronous communication the caller must wait
until the callee returns. In the clock-synchronous model,
the callee is performing its own step when it receives the
call and can respond to the call only in the next step at
the next tick of the clock. Since by the perfect
technology assumption an edge is taken in zero time,
the caller cannot wait for the callee to do its work. We
therefore have no synchronous communication in clock-
synchronous semantics.

Figure 9 shows the execution algorithm for the multi-
object clock-synchronous semantics. All existing objects
wait simultaneously for changes until the global clock

While true do
e Received changes for existing objects until clock ticks
e Execute a step for every existing object (see Fig. 10)

253

1. For every existing object id, compute its step
nextstep(Cfid],fid]) using the algorithm in Fig. 4
2. For every existing object, execute for every edge in its
step the actions (only for updating primed variables)
3. For every existing object
e Compute its next configuration
e Update its current configuration Cfid] with its next
configuration
4. For every existing object id
e Update the variables with the values of their primed
counterparts (including the input set)
e Empty its primed input set /'fid] (that contains the
events generated in the step itself)
e Switch some timers on and some timers off

Fig. 10. Algorithm to execute a step in the multi-object clock-
synchronous semantics.

ticks. Next, all existing objects perform a step in parallel
(multistep). The execution of a multistep is described in
detail in Fig. 10. It is a straightforward extension of the
algorithm for single steps presented above in Fig. 6. All
updates to all variables are made in parallel and
simultaneously; for example, the configurations of the
existing objects are updated simultaneously.

The only thing different is that we now have a primed
input set for each object id to which updates (events
generated) are made. This is done for the following
reason. Events are generated while the actions are being
executed (in part 2 of Fig. 10). But then the input set is
still filled with original input events. Only in part 4 of
our algorithm is the input set emptied. If generated
events were to be put in the input set immediately, the
system would no longer know which input events to
remove, and which to keep. We therefore add generated
events to primed input sets rather than to the original
unprimed ones.

3.6.2. Clock-Asynchronous Semantics

In clock-asynchronous semantics both asynchronous and
synchronous communication is allowed. Synchronous
communication is allowed because each object instantly
reacts to the events it receives and hence is always ready
to synchronise with another object. We assume that only
a single object is active during a single step. We can
justify this by the perfect technology assumption: single

While true do
e Receive changes for objects (external event,
temporal event)
e Repeat: if there is an object with an unstable stage,
then execute a step for this object (see Fig. 12)
Until all objects have a stable state

Fig. 9. Execution algorithm for the multi-object clock-synchronous
semantics.

Fig. 11. Execution algorithm for the multi-object clock-asynchro-
nous semantics.

254

1. For the object do
e Compute nextstep(C,l) using the algorithm in Fig. 4
e For every edge in the step execute the actions (only
updating primed variables). This requires maintaining a
call stack for synchronous calls
e Compute the next configuration
e Update the current configuration C with the next
configuration
e Empty the input set /
e Update the local variables with the values of their
primed counterparts
e Switch some timers on and some timers off
2. For every existing object id do
e Update the input set /fid] with the value of the primed
input set /'fid] (may contain events generated in
current step)
e Empty the primed input set /'fid]

Fig. 12. Algorithm to execute a single-object step.

steps and supersteps do not take time to execute. The
execution algorithm for the multi-object clock-asynchro-
nous semantics is shown in Fig. 11.

The algorithm to execute a single step for one single
object id is shown in Fig. 12. The algorithm defines a
run-to-completion semantics. The definition is a straight-
forward adaptation of the step execution algorithms
shown before in Figs 6 and 10. Note that the updates to
input sets are made to all objects, rather than one.

What remains is to define the meaning of
synchronous calls as part of the execution of actions.
If an object calls operation oper of object id, then first
id should exist, so Exists(id), and second, id should
process the call by executing a step itself. Since id
itself may have a non-empty input set /[id], this input
set should be remembered before the call operation is
processed and placed back after id has finished
executing its step. When id finishes taking the step,
the call action has finished and the caller proceeds with
its own step. So, with call actions nested steps are
introduced. This is a run-to-completion semantics,
because it says that a call action is executed only
when the called action is executed.

We illustrate this by means of a small example. In Fig.
13 we show two objects O1 and O2. Object O2 can call
operation f of object O2. Suppose each object is in its
initial configuration, so C[O1] = {O1.root,M} and C[O2]
= {02.root,P,R}, and that simultaneously object Ol
receives event d and object O2 receives event g. Then
according to our algorithm in Fig. 11, either O1 starts
processing first and then O2, or the other way around.
Let us assume that O1 starts processing first and starts
executing a step according to the algorithm in Fig. 12. At
some point, O1 calls operation f of object O2. Then,
1[02] still contains g. Thus, this input is remembered and
temporarily removed from O2’s queue. Next, O2
executes the call operation and reaches configuration

R. Eshuis et al.

dicall O2.f
object O1 (v w
e

object 02

Fig. 13. Example of synchronous communication.

{02.ro0t,Q,R}. Note that O1 is still busy taking its step.
Then the old input g is copied back to /[O2]. Because the
call action has finished, O1 can finish its step. Next, Ol
reaches configuration {O/.root,N }. Then O2 can react to
event g and it reaches configuration {O2.r00t,Q,S}.

3.7. Related Work

Our statechart semantics is an object-oriented version of
the semantics for STATEMATE statecharts defined by
Harel and Naamad [24], and defined more formally by
Damm et al. [27]. Our semantics adds creation and
deletion and communication to the STATEMATE state-
charts semantics.

The RSML notation defined by Leveson et al. [33] is a
variant of statecharts, for which a STATEMATE-like
semantics is used, as we do. They consider single
statecharts without communication and without object
creation and deletion.

In a previous paper [26] we have defined our
statechart semantics formally but without giving execu-
tion algorithms and without providing any details on
how the semantics could be applied, nor on how it can be
embedded in a method. (We prefer not to call our
semantics a UML statechart semantics, since there seems
to be a consensus in the UML community that a
semantics for UML statecharts must be on the
implementation level.) Because of the perfect technol-
ogy assumption, our statechart semantics is considerably
simpler than the informal OMG semantics for UML
statecharts. Our semantics is based upon an earlier
requirements-level semantics for UML with simple
state-transition diagrams given by Wieringa and
Broersen [34]. The contribution of this paper lies in
the definition of a precise requirements-level statechart
semantics with communication and object creation, and
in the combination of this with informal techniques and
model checking.

Requirements-Level Semantics Object-Oriented Statecharts

Most formalisations of UML statecharts [35-40] are
implementation-level semantics. They all deal with one
simple statechart only, and often leave out certain
features, such as communication or real time, because
these features cannot be handled easily by the semantic
mechanism proposed by the authors. Examples of
semantic mechanisms used are graph transformations
[36], inference rules [35] and rewrite rules [37].

Betty Cheng’s group has developed a general
framework for deriving formal specifications from
UML class and state diagrams [41]. They focus on
the domain of embedded systems. They translate the
UML metamodel, which is the syntax definition of the
UML, into the metamodel of a formal language by a
homomorphic mapping. The formal languages they
consider are VHDL and the input language of Spin.
The semantics of the target languages then give a
semantics to the UML.

Harel and Kupferman [42] give an executable object
model for Mealy diagrams, i.e. statecharts without
hierarchy or parallelism. Their semantics is on the
implementation level. They focus on communication
between different objects and on the possibilities of
deadlock in a clock-asynchronous semantics. Our
treatment of communication stays at the requirements
level, where no deadlock is possible. We consider both a
clock-synchronous and clock-asynchronous semantics.

4. Model Checking

4.1. Tool Support

The semantics presented in Section 3 has been
implemented in the CASE tool TCM as follows
(compare Fig. 1).

o TCM contains a new statechart editor. TCM can
generate from a single statechart automatically an
input for a symbolic model checker, NuSMV. The
semantics NuSMV attaches to the input coincides with
our clock-asynchronous semantics. TCM uses the
encoding suggested by Chan et al. [43] for (Nu)SMV;
their statechart semantics is similar to our clock-
asynchronous statechart semantics.

If a property does not hold, the model checker
generates a counterexample in the form of a trace
through the model checker input. This trace is fed
back to TCM, which shows the counterexample in a
way understandable to the analyst, namely as a path
through the statechart. However, the feedback may
still be difficult to interpret, since the path may not
provide sufficient details. Current work includes

255

translating the feedback of the model checker into a
UML sequence diagram, which can show more details
than a path.

e TCM contains an editor for collections of flat
statecharts (communicating Mealy diagrams with
parallelism) and can generate the LTS that is the
semantics of this collection according to Section 3. In
this case, counterexamples generated by the model
checker are not yet fed back to TCM but must be
interpreted by the analyst. This editor interfaces with
Kronos.

The example discussed below has been verified in two
ways, namely as a statechart and as a collection of
parallel Mealy diagrams. To do this, the statecharts
presented below were transformed manually into a singe
statechart and a collection of Mealy diagrams, respec-
tively. Both versions of the specification gave the same
results.

The logics used most often in model checking are
Linear Temporal Logic (LTL) and Computation Tree
Logic (CTL). LTL formulas express properties of a
single run (i.e., a trace of one possible system
behaviour). CTL formulas express properties of states,
and of the set of all possible runs starting in the state. In
LTL the future of a state in a run is inevitable, whereas
in CTL a state usually has many different possible
futures. Thus, generally speaking, CTL formulas express
possibility properties, whereas LTL formulas express
properties that are inevitable [44]. For example, ‘the
system cannot deadlock’ is a CTL property, whereas ‘the
system will not deadlock’ is an LTL property. There are,
however, requirements that can be specified both in LTL
and CTL. Nevertheless, LTL and CTL are incomparable
with respect to expressiveness: there are requirements
that can specified in LTL but not in CTL (e.g., P6 in Fig.
17) and vice versa (e.g., P2 in Fig. 17). In formal
requirements engineering, usually LTL is used, for
example in KAOS [45].

A particular class of LTL formulas are the so-called
strong fairness constraints. Strong fairness constraints
are used to prevent starvation of some part of a process
by forbidding to stay forever in some loops. Below in the
example we will show why strong fairness constraints
are useful. Strong fairness constraints can be combined
with both LTL and CTL [46], but here we only combine
them with LTL constraints.

Models and properties may quantify time, i.e., attach a
precise duration to time intervals. This is called real
time. There are two flavours of real-time models: dense
real time and discrete time. In dense real-time models,
time is represented by a real variable, whereas in discrete
time models time is represented by a integer variable.
Dense time models have the property that between any

256

two points in time there exists another point in time.
Discrete time models do not have this property, and they
are therefore in general considered to be less realistic
than dense time. But discrete time models are easier to
analyse than dense time models. Our semantics uses
dense time (see Section 3.3).

Dense time properties can be specified with timed
CTL (TCTL). TCTL is an extension of CTL with real
time [47]. It allows the user to quantify time periods. We
have defined an extension of TCTL with actions [48].
This extension can be model checked by Kronos [10] via
a reduction to TCTL.

If the property does not refer to real time, then for
some class of real-time models we can switch from
dense time to discrete time, without invalidating the
property to be checked [49,50]. The real-time models
used in our semantics of OO statecharts fall into this
class. Note that discretisation does not work for
properties referring to real time, because the discretised
model can have slightly different timing behaviour than
the original model.

In our verification approach, we use both dense time
models and discrete time models. With discrete time
models only properties not referring to real time, i.e.
both CTL and LTL, can be verified. With dense time
models, CTL and TCTL properties can be verified.

We do not want to restrict ourselves to one particular
model checker, because no model checker is usable for
each purpose. Which model checker is most suited
depends upon the properties of the system being
modelled and the requirement being verified. We have
implemented an interface to NuSMV [9] and Kronos
[10]. Table 3 shows the features of these model checkers.
Each of the model checkers has a particular logic to state
desired properties; the logic’s expressiveness defines
which properties can be stated. NuSMV represents states
symbolically, i.e. implicitly, by predicates, whereas
Kronos represents states in an enumerative way, i.e.,
explicitly.

We have extended NuSMV with strong fairness to
NuSMV [51] by implementing an algorithm defined by
Kesten et al. [46]. Although strong fairness properties
can be expressed in LTL and thus can be model checked
with the standard NuSMV LTL algorithm, it is some-
times more efficient to encode them separately and use a

Table 3. Model checkers used and their features

Model Time Encoding Logic

checker model

NuSMV Discrete Symbolic Computation Tree Logic (CTL)
Linear Temporal Logic (LTL)

NuSMVy,,;, Discrete Symbolic LTL with strong fairness, LTL

Kronos Dense Enumerative Timed CTL (TCTL), CTL

R. Eshuis et al.

specific model-checking algorithm [51]. Below in the
example we will show why strong fairness constraints
are useful.

In future work, we intend to use Spin [52]. Existing
encodings for statecharts in Spin suggest that using Spin
will be less efficient, as these encodings require more
variables to encode a statechart [53,54]. In addition, Spin
does not represent states symbolically but enumera-
tively, and it uses an interleaving semantics [52]. We
therefore expect that Spin will not perform as well as
NuSMV.

4.2. Example

The Electronic Ticket System (ETS) allows railway
passengers to buy electronic tickets via a personal digital
assistant (PDA) and a smart card. The example is
adapted from a paper of Reif and Stenzel [55]. A ticket is
stored as a virtual, non-physical entity on the smart card.
Passengers acquire their tickets through a wireless
connection with the computer system of the railway
company and pay through a connection with the bank
clearing house’s computer. In the train, the ticket
collector uses a similar PDA to check the ticket’s
validity and to stamp it. It is possible to get a refund for
unused or partly used tickets; however, a ticket collector
or a railway clerk has to initiate the refund to prevent
fraud.

Figure 14 shows the mission statement of ETS, and
Fig. 15 shows the context and a requirements-level
architecture of ETS. The architecture is requirements-

Name: Electronic Ticket System (ETS)

Purpose: Sell virtual railway tickets and register their use
using a PDA and a smart card.

Responsibilities: Sell tickets; show tickets; stamp tickets
(railway personnel only); refund tickets (railway personnel
only).

Exclusions: The ETS does not provide travel planning
facilities. It only handles tickets for one traveller.

Fig. 14. Mission of ETS.

ETS
Stam|
Ticket P Ticket
showing stamping
dialogue dialogue
- Ticket -
] !] Ticket |}]
Traveller Tlckgt selling refunding Railway
dialogue | Station dialogue personnel
surrogate
Clearing Bank
house

Fig. 15. ETS context and requirements-level decomposition.

Requirements-Level Semantics Object-Oriented Statecharts

level because it is motivated purely in terms of the
desired functionality of ETS and of the need to interact
with certain external entities in the context of ETS. The
requirements-level architecture abstracts from the
physically distributed nature of ETS. Note the difference
between stations and tickets: stations are not a part of the
system; the ETS only contains information about stations
in the surrogates. The (electronic) tickets and stamps, in
contrast, are part of the system.

The lines in the architecture diagram represent
communication channels. The nodes represent object
classes. The nodes enclosed in the ETS node represent
classes of ETS components. The mission statement and
the context and architecture diagram are examples of
informal diagrams that are part of a larger ETS
specification that contains other parts, both formal and
informal. Examples of formal specification parts are the
ticket life cycle shown in Fig. 16 and the ticket selling
dialogue of Fig. 2.

Figure 17 lists six properties that must be brought
about by the ETS. This is the set £ of emergent
properties mentioned in the systems engineering argu-

Paid
ticket Validity
becomes
fler(1 day) (N \onger]

: o {valid a
Not yet valid Valid ok

A

Refundable
stamp
Partly used - lin(Valid)]
refund stamp

{in(Valid)]
(Refunded J

Completely
used

Fig. 16. Ticket life cycle.

Not yet paid

P1 For each payment, exactly one ticket is created.

P2 An unused ticket can be used or refunded.

P3 A used ticket cannot be used again nor refunded.

P4 A refunded ticket cannot be used any more.

P5 A ticket cannot be used for more than one day.

P6 A finite time after a ticket selling dialogue is started, ETS
is ready to sell another ticket again.

Fig. 17. Desired properties E. to be brought about by the ETS.

A1 Railway personnel does not request to refund a ticket
while stamping one.

A2 The traveller does not request to buy a ticket while
railway personnel is refunding another one.

A3 The traveller only selects a route or ticket type finitely
often during one selling dialogue.

A4 During a dialogue, the traveller will provide relevant
input in finite time.

Fig. 18. Some assumptions needed for the systems engineering
argument.

257

ment that 4 and S entail £ (Section 1.2). The ETS can
bring these properties about only in a joint effort with
external entities. Some assumptions about the environ-
ment that we note straight away are listed in Fig. 18.
Assumptions A1 and A2 help in simplifying the system;
they are used in the Kronos model. Assumptions A3 and
A4 we discovered when model checking P6; we explain
them in the next subsection.

4.3. Model Checking

We model checked the properties in Fig. 17 with
NuSMV 2.0, NuSMV,;, 2.0 and Kronos, using both the
statechart version (with NuSMV, NuSMV,;) and the
Mealy diagrams version (with Kronos) of the statechart
diagrams. Note that the boxes in the architecture diagram
represent classes. To do model checking, we must
instantiate each class to a finite number of objects. The
specification Sg7g used in model checking then consists
of the statecharts for each of the individual objects in the
system.

In our model-checking experiments, we instantiated
the most important classes to a few objects. For NuSMV
(statechart version), we have used three different models,
in which we always had one ticket-selling dialogue, but
one to three different ticket life cycles and corresponding
refund dialogues. Other classes we did not instantiate.
We did not use Assumptions A1 and A2 here.

For Kronos (Mealy machines version), we have used
one ticket, one ticket-selling dialogue, one stamping
dialogue and one refund dialogue. The ticket-selling
dialogue, stamping dialogue and refund dialogue were
interleaved with each other, i.e. only one of them could
be active at the same time. This is justified by
Assumptions A1 and A2. Other classes we did not
instantiate. We used Assumptions A1 and A2 to reduce
the state space of the model, otherwise Kronos could not
be used. In addition, in the Kronos model we used the
observation that in a state only those events need to be
considered that trigger some relevant edges. By not
considering irrelevant events, the search space is reduced
considerably.

Properties P1 to P5 were checked with NuSMV
using CTL. Properties P2, P4 and P6 were also
checked with NuSMV and NuSMV,;. using LTL. We
have used discretised timers, using time units of 30
seconds. For example, the timeout of 1 day in Fig. 16
became a timeout of 2880 time units. Because the model
includes real time, we additionally checked properties
P1 to P5 with Kronos using CTL and TCTL.

We now discuss the most interesting properties in
more detail.

258

P1

For each payment, exactly one ticket is
created. This property cannot be formalised in CTL
or LTL, as it would require an operator reasoning about
creation and deletion of new elements, whereas in
standard model checking the set of elements is fixed.
Recently, DiStefano et al. [56] have defined an extension
of LTL and defined a model-checking algorithm for this
extension that makes it possible to model check creation
and deletion in object-oriented models. We plan to
implement this algorithm in NuSMV. For the Kronos
model, we checked a variant of the property.

P2
An unused ticket can be used or refunded. We
formalise this property in CTL as:

AG (Unused — ((EF Completely used) A EF
Refunded))

This property is not true. The model checker returns a
counterexample in which the ticket is in Unused while
event refund occurs. Then node Completely used can
no longer be reached, even though the ticket is still in
Unused. We change the property and try it again.

AG ((Unused A —-refund) — ((EF Completely
used) A EF Refunded))

The changed property P2b is also false. The model
checker returns a counterexample in which the ticket is
never used and eventually becomes invalid, by entering
node No longer valid. Then node Completely used
becomes unreachable. We change P2b as follows and
check it again.

AG ((Unused A —refund) — (EF (Completely
used VvV No longer valid) A EF Refunded))

This property, P2c, is verified to be true.

Even though the property is a possibility property and
thus cannot be expressed in LTL, we write the following
LTL formula. It states that if a ticket is unused, it
inevitably will become, sometime in the future, either
completely used, or no longer valid, or refunded.

G (Unused — (F (Completely used Vv No
longer valid v Refunded)))

This property is verified to be true.

P3

A used ticket cannot be used again nor
refunded. This is a nice example of an informal
specification that can formalised in different ways. One
of us formalised this as

AG (Completely used —» —EF (Partly used Vv
Refunded))

R. Eshuis et al.

which means that a ticket that is completely used cannot
be used again or refunded. This property was verified to
be true. But another one of us formalised it as

AG ((Completely used Vv Partly used) —» —-EF
(Partly used Vv Refunded))

which means that a ticket that has been stamped for at
least part of its validity cannot be used again or refunded.
This property was verified to be false, as it should be. See
Fig. 16 for the difference between Partly used and
Completely used. Both properties are possibility
properties; therefore they cannot be expressed in LTL.
By rewriting the property slightly (as is done in the
previous and next items), the property can be formalised
in LTL.

P4
A refunded ticket cannot be used any more.
We write this property in CTL.

AG (Refunded — —EF (Refundable v Com-
pletely used))

This property is true. The following LTL formula
expresses a similar property: ‘a refunded ticket will not
be used any more’.

G (Refunded — —F (Refundable v Comple-
tely used))

This property is also true. These two properties are not
equivalent.

P5

A ticket cannot be used for more than one day.
We have verified the following TCTL formula with

Kronos:

AG (-EF (stamp A EFZ2%" stamp))

The property is a real-time property and cannot be
verified using a discretised model. So NuSMV could not
be used. With forward reachability analysis, Kronos ran
out of memory. But with backward analysis, Kronos
reported that —~EF (stamp A EF=24" stamp) is false
in all states of the system, which implies that the
property is true.

P6

A finite time after a ticket-selling dialogue is
started, ETS is ready to sell another ticket
again. See Fig. 2 for the ticket-selling dialogue. This is
formalised in CTL as follows:

AG (request to buy ticket - AF Ready to sell)

According to NuSMYV, this property is false, since
NuSMV thinks that it is possible that user will do

Requirements-Level Semantics Object-Oriented Statecharts

select ticket type forever without every doing
done or abort. This means that for NuSMV the

property
EF EG Ticket type known

is true in the initial state. The formula says that it is
possible, after some time, to stay forever in state node
Ticket type known(see Fig. 2). But we do not want
this property to be true. How can we change the
specification of ETS so that it will make this formula
false? Note that just adding an assumption that forbids to
stay forever in this state node is not enough.

In every state, irrelevant events that have no effect can
occur forever while a relevant event may never occur.
For example, in node Ticket sale offered irrelevant
event request to buy ticket can occur over and over
again while relevant events accept offer or decline
offer never occur. This would cause the system to
remain in node Ticket sale offered forever. So, even
if there are no visible loops in the statechart model, it is
possible that the system will stay forever in a state! To
rule out all these situations, we have added strong
fairness conditions on edges, which specify that all these
loops are finite. For example, a strong fairness condition
for edge b in Fig. 19 says that if N is active infinitely
often, then edge b is taken infinitely often too. So, a
strongly fair run will never reach a state from which N
will be active infinitely often, but edge b is never taken.
Strong fairness conditions have been introduced by
Gabbay et al. [57].

The NuSMV ;. model checker only takes into account
runs that satisfy these strong fairness constraints. To see
why these strong fairness constraints are what we want,
consider again node Ticket type known and event
select tickettype. In a strongly fair run, it is
impossible to iterate infinitely often over event select
tickettype, without also performing an abort or done
infinitely often. This allows us to prove that after any
request to buy a ticket, the system reaches the Ready to
sell state in finitely many steps. This is the property we
wanted. NuSMV,;,. requires the desired property to be
specified in LTL. In LTL, P6 becomes

Fig. 19. Example to illustrate strong fairness condition.

259
G (request to buy ticket - F Ready to sell)

This was verified to be true. Note that the strong fairness
conditions added in this case are implied by assumptions
A3 and A4 on the environment. If the environment
violates these assumptions, it is unknown whether the
desired property P6 holds. The assumptions say that
under normal usage, P6 holds.

For tickets, there is also a potential infinite loop: one
might stamp a partially used ticket over and over again.
But here, strong fairness is not necessary to prove
termination, since the timeout in node Valid guarantees
that stamp cannot occur infinitely often. We have
verified this in property P5.

We conclude by showing the performance character-
istics of model checking. All the experiments were
performed on a Sun Ultra 10 with 256 MB of main
memory.

Table 4 shows the performance characteristics of the
statechart version, which used NuSMV and NuSMV ..
We used a monolithic transition relation. We have
used three different statechart models. With option
NuSMV,;,. (LTL), we either do not use strong fairness
constraints (P2d, P4b) or encode them as antecedent of
the LTL property (P6). With option NuSMV,;,. we
encode strong fairness constraints separately from the
LTL property; this option is only used for P6. We were
unable to compute the number of reachable states of
Model C.

Here are some remarks on the results. Property P2b
requires a large number of BDD nodes because a
counterexample is returned in which a timeout is
generated after 2880 time units. It is quite interesting
to see that the performance characteristics of NuSMV
with LTL and NuSMV,,, with LTL are quite different.
Which algorithm performs better apparently depends
upon the LTL formula being checked. In this example,
NuSMV with LTL performs better than NuSMV,;, on
larger models, even for strong fairness constraints (P6).
We think that this is because there is only a limited
number of strong fairness constraints needed in this
example (around 10). However, in other examples [51]
we had to use much stronger fairness constraints, and
there we found that NuSMV/,;,. performed better than
NuSMV with LTL. So it cannot be stated beforehand
which algorithm is going to perform better, as this
heavily depends upon the model and property being
checked. Finally, we note that we were unable to
generate counterexamples for LTL specifications (with
or without strong fairness), even in the simple model.
The performance characteristics clearly show that model
checking can (yet) only be applied to small-sized

260

Table 4. Performance characteristics of model checking different statechart versions. The number of BDD nodes is a measure of memory

R. Eshuis et al.

usage
NuSMV (CTL) NuSMV (LTL) NuSMV;, (LTL) NUuSMV/;,
Time (s) BDD nodes (no.) Time (s) BDD nodes (no.) Time (s) BDD nodes (no.) Time (s) BDD nodes (no.)
Model A: 1 Ticket-selling dialogue, 1 Ticket, 1 Refund dialogue.2,267,520,000 reachable states.
P2 a 43.88 88,629
P2 Db 152.98 145,997
P2 c 44.85 51,231
P2d 763.45 50,664 136.63 229,397
P3a 43.39 51,463
P3 b 45.05 77,223
P4 a 43.52 38,584
P4 b 43.46 51,345 63.46 111,956
P6 7714 361,353 117.27 147,343 71.98 271,841
Model B: 1 Ticket-selling dialogue, 2 Tickets, 2 Refund dialogues. 5,018,360,000,000,000 reachable states
P2 a 152.31 1,650,749
P2 Db - -
P2 c 87.13 253,783
pP2d - - 1643.83 405,775
P3a 84.43 262,090
P3 b 87.77 324,732
P4 a 83.81 219,291
P4 b 84.43 248,358 703.35 241,143
P6 221.00 280,929 1607.91 278,292 895.82 97,879
Model C: 1 Ticket-selling dialogue, 3 Tickets, 3 Refund dialogues.Unknown number of reachable states
P2 a - -
P2 b - -
P2c 133.63 288,828
P2d - - - -
P3a 132.37 288,448
P3 b 134.34 426,255
P4 a 131.93 234,088
P4 b 132.05 292,859 - -
P6 340.63 224,929 - - - -

‘~’ denotes a timeout (> half an hour).

Table 5. Performance characteristics of model checking Mealy
machines model with Kronos

does not give performance characteristics, we used the
operating system to get some performance results. If
Kronos did not give a result, sometimes we checked an

ime (s) equivalent property (P4) or used a different search
=¥ 1.7 technique (P5, backward instead of forward analysis).
EZ 0.7 P6 was not checked as Kronos does not support strong
3a 0.9 ; ;
Pa ~09) fairness constraints nor LTL.
P5 - (0.8)

Model A’: 1 Ticket selling dialogue, 1 Ticket, 1 Refund dialogue, 1
Stamping dialogue.1070 locations.

examples, due to the state space explosion. We analyse
the cause of state space explosion in detail elsewhere
[51].

Table 5 shows the performance characteristics of the
Mealy machine models, which used Kronos. The size of
the Mealy machine model we checked with Kronos has
1070 locations and two timers. Due to the timers, the
state space is much larger than 1070 states. Since Kronos

4.4. Related Work

The KeY tool [58] extends the UML case tool ‘Together’
by formal verification. Its goal is to facilitate and
promote formal verification in real-world applications.
The tool is used in combination with Java and focuses on
implementation-level semantics.

The Software Cost Reduction method [19-21] is
similar in philosophy to our approach, but is based on a
tabular notation rather than statecharts. It is supported by
a tool set that interfaces with Spin.

Requirements-Level Semantics Object-Oriented Statecharts

Chan et al. [43] have model checked a single RSML
statechart by defining a mapping from statechart syntax
to the SMV input syntax, which makes model checking
very efficient. We have used this encoding for our
example. They only use CTL whereas we use CTL, LTL
and strong fairness constraints. We do not know whether
they have implemented this mapping in a statechart
editing tool. Finally, they do not embed their approach in
a method.

Latella et al. [59] model check UML statecharts using
Spin. They do not focus on how the model checker is
integrated with the UML design tool. Their statechart
semantics does not handle multiple statecharts or real
time.

Lilius and Porres Paltor [53] have developed a tool to
model check UML statecharts using Spin. The tool they
developed translates counterexamples returned by Spin
back in terms of sequence diagrams. It is unclear
whether the tool is integrated with a UML design tool.

5. Conclusions and Further Work
5.1. Summary

In this paper we presented a requirements-level
semantics for object-oriented statecharts and showed
that it can be used for requirements-level model
checking in a goal-oriented approach. Model checking
can be used to uncover hidden assumptions in formal
requirements specification. It can also be used to identify
ambiguities in an informal specification. It is useful in
this respect to have different people produce a
formalisation of one set of informally specified proper-
ties. Our example specification briefly illustrates the way
in which formal and informal elements of a system
specification can be combined.

5.2. Maturity of Model Checkers

Our experience with model checking is that it is not yet
the push-button technology that some of us would like it
to be. When we formalise assumptions 4, a specification
S and desired properties £, we would like a model
checker to tell us whether 4 A S | E and, if the
entailment does not hold, give us a counterexample.
However, in actual practice we found that the model
checkers that we used had to be used ‘smartly’ in order
to produce the desired result. We defined a general
format for the LTS that, with minor adaptations, can be
input to various model checkers. However, this input
format is very inefficient in memory usage. NuSMV is a
symbolic model checker, which can be given a much
more efficient input by encoding our LTS semantics

261

symbolically, using the input language of NuSMV
optimally. Therefore, in this paper we have used the
symbolic encoding for statecharts that has been defined
by Chan et al. for RSML [43]. This decreased the
amount of time and memory needed significantly, but
not enough. NuSMV is sensitive to the order in which
the state variables are declared. Two different orderings
may differ wildly in their model checking execution
time, with differences between seconds or days to verify
a property. We checked properties with NuSMV using
an efficient ordering, which we found after a few
iterations in which we used NuSMV interactively and let
NuSMYV itself reorder the ordering of variables while it
was building an internal model for model checking.
These experiences indicate that the ideal of adding a
user-friendly front end such as TCM to a set of model
checkers is currently not yet attainable. However, we
expect the technology to improve in the near future and
we think NuSMV is a suitable tool to check properties of
statecharts. Kronos is not a symbolic model checker and
could only be used for a simplified version of the model.

5.3. Further Work

We plan to extend our tool support for model checking
in various ways. First, we intend to interface Kronos
directly with the statechart editor. Second we intend to
use Spin for model-checking statecharts, as Spin is used
quite frequently in other approaches that model check
statecharts. Third, we are currently working on tool
support for translating the feedback of the model checker
into a UML sequence diagram. Fourth, we plan to look
at model checking of creation and deletion of objects, by
applying some recent work of DiStefano et al. [56].
Another plan for future work is to provide support in
the specification of properties in the form of templates of
frequently occurring properties. Dwyer et al. [60] have
found a list of eight patterns in temporal properties and
in the KAOS project [15,45] goal-oriented refinement
patterns have been identified. We intend to look at the
problem frames identified by Jackson [18] to see if we
can build a library of formally verified patterns, plus
guidelines to recognise and use these patterns.

Acknowledgements. Rik Eshuis was supported by NWO/SION, grant
no. 612-62-02 (DAEMON). David Jansen was partially supported by
NWO/SION, grant no. 612-323-419 (DEIRDRE).

References

1. Harel D. Statecharts: a visual formalism for complex systems. Sci
Comput Program 1987;8(3):231-274

2. Harel D, Pnueli A. On the development of reactive systems. In:
Apt K (ed). Logics and models of concurrent systems. NATO ASI
Series. Springer, Berlin, 1985, pp 477-498

262

3.

13.

15.

16.

17.

18.

19.

20.

21.
22.

23.

24.

25.
26.

Rumbaugh J, Blaha M, Premerlani W, Eddy F, Lorensen W.
Object-oriented modeling and design. Prentice-Hall, Englewood
Cliffs, NJ, 1991

. Rumbaugh J, Jacobson I, Booch G. The Unified Modeling

Language reference manual. Addison-Wesley, Reading, MA,
1999

. von der Beeck M. A comparison of statecharts variants. In:

Langmaack H, de Roever W-P, Vytopil J (eds). Formal
techniques in real-time and fault-tolerant systems. Lecture
Notes in Computer Science 863. Springer, Berlin, 1994, pp
128-148

. OMG. Action semantics for the UML (OMG ad/2001-03-01),

2001. URL: http://www.umlactionsemantics.org

. Dehne F, Wieringa R, van de Zandschulp H. Toolkit for

conceptual modeling (TCM): user’s guide and reference.
Technical report, University of Twente, 2000. URL: http://
www.cs.utwente.nl/~tcm

. McMillan KL. Symbolic model checking. Kluwer, Dordrecht,

1993

. Cimatti A, Clarke E, Giunchiglia F, Roveri M. NuSMV: a new

symbolic model checker. Int J Software Tools Technol Transfer
2000;2(4):410-425

. Yovine S. KRONOS: a verification tool for real-time systems. Int

J Software Tools Technol Transfer 1997;1(1/2):123—-133

. Smith CJ. Synonyms discriminated. G. Bell, London, 1926
. Harel D, Rumpe B. Modeling languages: syntax, semantics and

all that stuff. Part I: The basic stuff. Technical report MCS00-16,
Weizmann Institute of Science, 2000. URL: http://www.wis-
dom.weizmann.ac.il/~harel

Wieringa RJ. Postmodern software design with NYAM: not yet
another method. In Broy M, Rumpe B (eds). Requirements
targeting software and systems engineering. Lecture Notes in
Computer Science 1526. Springer, Berlin, 1998, pp 69-94

. Wieringa RJ. Design methods for software systems: Yourdon,

Statemate and the UML. Morgan Kaufmann, San Mateo, CA, (to
be published)

Darimont R, van Lamsweerde A. Formal refinement patterns for
goal-driven requirements elaboration. In: Fourth ACM sympo-
sium on the foundations of software engineering (FSE4), 1996, pp
179-190

van Lamsweerde A, Darimont R, Massonet P. Goal-directed
elaboration of requirements for a meeting scheduler: problems
and lessons learnt. In: Proceedings of the second IEEE
international symposium on requirements engineering, IEEE
Computer Society Press, Los Alamitos, CA, 1995

Gunter CA, Gunter EL, Jackson MA, Zave P. A reference model
for requirements and specifications. IEEE Software 2000;
17(3):37-43

Jackson MA. Problem frames: analysing and structuring software
development problems. Addison-Wesley, Reading, MA, 2000
Heitmeyer C, Kirby J, Labaw B, Bharadwaj R. SCR: a toolset for
specifying and analyzing software requirements. In: Hu AJ, Vardi
MY (eds). Proceedings of the 10th international computer aided
verification conference. Lecture Notes in Computer Science 1427.
Springer, Berlin, 1998, pp 526-531

Heitmeyer CL, Jeffords RD, Labaw BG. Automated consistency
checking of requirements specifications. ACM Trans Software
Eng Methodol 1996;5(3):231-261

Parnas DL, Madey J. Functional documents for computer
systems. Sci Comput program 1995;25:41-61

McMenamin SM, Palmer JF. Essential systems analysis. Yourdon
Press/Prentice-Hall, Englewood Cliffs, NJ, 1984

Berry G, Gonthier G. The ESTEREL synchronous programming
language: design, semantics, implementation. Sci Comput
Program 1992;19(2):87-152

Harel D, Naamad A. The STATEMATE semantics of statecharts.
ACM Trans Software Eng Methodol 5(4):293-333

OMG. Unified Modeling Language version 1.4, 2001

Eshuis R, Wieringa R. Requirements-level semantics for UML
statecharts. In: Smith S, Talcott C (eds). Proceedings of
FMOODS 2000, IFIP TC6/WG6.1. Kluwer, Dordrecht, 2000,
pp 121-140

27.

28.

29.

30.

31.

32.

33.

34.

3s.

36.

37.

38.

39.

40.

41.

R. Eshuis et al.

Damm W, Josko B, Hungar H, Pnueli A. A compositional real-
time semantics of STATEMATE designs. In: de Roever W-P,
Langmaack H, Pnueli A (eds). Proceedings of COMPOS ’97.
Lecture Notes in Computer Science 1536. Springer, Berlin, 1998,
pp 186-238

Harel D, Gery E. Executable object modeling with statecharts.
IEEE Comput 1997;30(7):31-42

Selic B, Gullekson G, Ward P. Real-time object oriented
modeling. Wiley, New York, 1994

Eshuis R, Wieringa R. Requirements-level semantics for UML
statecharts. Technical report TR-CTIT-00-07, University of
Twente, 2000

Elmasri R, Navathe SB. Fundamentals of database systems, 2nd
edn. Benjamin Cummings, Redwood City, CA, 1994

Pnueli A, Shalev M. What is in a step: on the semantics of
statecharts. In Ito T, Meyer AR (eds). Theoretical aspects of
computer software. Lecture Notes in Computer Science 526.
Springer, Berlin, 1991, pp 244-265

Leveson NL, Heimdahl MPE, Hildreth H, Reese JD. Require-
ments specification for process-control systems. IEEE Trans
Software Eng 1994;20(9):684-707

Wieringa R, Broersen J. A minimal transition system semantics
for lightweight class- and behavior diagrams. In: Broy M,
Coleman D, Maibaum TSE, Rumpe B (eds). Proceedings of
PSMT’98, Technische Universitdt Miinchen, TUM-19803, 1998
von der Beeck M. Formalization of UML-statecharts. In: Gogolla
M, Kobryn C (eds). Proceedings of ‘UML’ 2001. Lecture Notes
in Computer Science 2185. Springer, Berlin, 2001, pp 406421
Kuske S. A formal semantics for UML state machines based on
structured graph transformations. In: Gogolla M, Kobryn C (eds).
Proceedings of “‘UML’ 2001. Lecture Notes in Computer Science
2185. Springer, Berlin, 2001, pp 241-256

Kwon G. Rewrite rules and operational semantics for model
checking UML statecharts. In: Evans A, Kent S, Selic B (eds).
Proceedings ‘UML’ 2000. Lecture Notes in Computer Science
1939. Springer, Berlin, 2000, pp 528-540

Latella D, Majzik I, Massink M. Towards a formal operational
semantics of UML statechart diagrams. In: Ciancarini P, Fantechi
A, Gorrieri R (eds). Proceedings of FMOODS’99, IFIP TC6/
WG6.1. Kluwer, Dordrecht, 1999, pp 331-347

Lilius J, Porres Paltor 1. Formalising UML state machines for
model checking. In: France R, Rumpe B (eds). Proceedings of
‘UML’ °99. Lecture Notes in Computer Science 1723. Springer,
Berlin, 1999., pp 430445

Reggio G, Astesiano E, Choppy C, Hussmann H. Analysing UML
active classes and associated state machines: a lightweight formal
approach. In: Maibaum TSE (ed). Proceedings of FASE 2000.
Lecture Notes in Computer Science 1783. Springer, Berlin, 2000,
pp 127-146

McUmber WE, Cheng BHC. General framework for formalizing
UML with formal languages. In: Proceedings of the 23rd
international conference on software engineering (ICSE °01).
IEEE Computer Society, 2001, pp 433442

429. Harel D, Kupferman O. On the behavioral inheritance of state-

43.

44,

45.

46.

based objects. Technical report MCS99-12, Weizmann Institute
of Science, 1999. URL: http://www.wisdom.weizmann.ac.il/
~harel
Chan W, Anderson R, Beame P, Burns S, Modugno F, Notkin D,
Reese J. Model checking large software specifications. IEEE
Trans Software Eng 1998;24(7):498-520
Lamport L. What good is temporal logic? In: Mason REA (ed).
Proceedings of the IFIP congress on information processing.
North-Holland, Amsterdam, 1983, pp 657—667
Dardenne A, van Lamsweerde A, Fickas S. Goal-directed
requirements acquisition. Sci Comput Program 1993;20(1-2):3—
50
Kesten Y, Pnueli A, Raviv L. Algorithmic verification of linear
temporal logic specifications. In: Larsen KG, Skyum S, Winskel
G (eds). Proceedings of the international colloquium on automata,
languages and programming (ICALP °98). Lecture Notes in
Computer Science 1443. Springer, Berlin, 1998, pp 1-16

Requirements-Level Semantics Object-Oriented Statecharts

47.

48.

49.

50.

51.

52.

53.

54.

Alur R, Courcoubetis C, Dill D. Model-checking in dense real-
time. Inform Comput 1993;104(1):2-34

Jansen DN, Wieringa RJ. Extending CTL with actions and real
time. In: Proceedings on international conference on temporal
logic 2000, pp 105-114

Asarin E, Maler O, Pnueli A. On discretization of delays in timed
automata and digital circuits. In: de Simone R, Sangiorgi D (eds).
Proceedings of Concur *98. Lecture Notes in Computer Science
1466. Springer, Berlin, 1998

Henzinger TA, Manna Z, Pnueli A. What good are digital clocks?
In: Kuich W (ed). Proceedings of the international colloquium on
automata, languages, and programming (ICALP’92). Lecture
Notes in Computer Science 623. Springer, Berlin, 1992, pp 545—
558

Eshuis R, Wieringa R. Verification support for workflow design
with UML activity graphs. In: Proceedings of the 2002
international conference on software engineering (ICSE ’02),
2002

Holzmann GJ. The model checker SPIN. IEEE Trans Software
Eng 1997;23(5):279-295

Lilius J, Porres Paltor I. vUML: a tool for verifying UML models.
In: 14th IEEE international conference on automated software
engineering. IEEE Computer Society Press, Los Alamitos, CA,
1999, pp 255-258

Mikk E, Lakhnech Y, Siegel M, Holzmann GJ. Implementing

55.

56.

57.

58.

59.

60.

263

statecharts in promela/spin. In: Proceedings of the second IEEE
workshop on industrial-strength formal specification techniques,
1998, pp 90-101

Reif W, Stenzel K. Formal methods for the secure application of
Java smartcards, December 1999. URL: http://www.informati-
k.uni-ulm.de/pm/kiv/projects/javacard_presentation.ps.gz
Distefano D, Rensink A, Katoen J-P. Model checking dynamic
allocation and deallocation. CTIT technical report TR-CTIT-01-
04, University of Twente, 2002

Gabbay D, Pnueli A, Shelah S, Stavi J. The temporal analysis of
fairness. In: Conference record of the seventh annual ACM
symposium on principles of programming languages, ACM,
1980, pp 163-173

Ahrendt W, Baar T, Beckert B, Giese M, Habermalz E, Hiahnle R,
Menzel W, Schmitt PH. The KeY approach: integrating object
oriented design and formal verification. In: Ojeda-Aciego M, de
Guzman IP, Brewka G, Moniz Pereira L (eds). Proceedings of the
eighth European workshop on logics in Al (JELIA). Lecture
Notes in Computer Science 1919. Springer, Berlin, 2000, pp 21—
36. URL: ftp://ftp.cs.chalmers.se/pub/users/reiner/jelia.ps.gz.
Latella D, Majzik I, Massink M. Automatic verification of a
behavioural subset of UML statechart diagrams using the SPIN
model-checker. Formal Aspects Comput 1999;11(6):637-664
Dwyer MB, Avrunin GS, Corbett JC. Patterns in property
specifications for finite-state verification. In: Proceedings of the
1999 international conference on software engineering (ICSE
’99), ACM, 1999, pp 411421

