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Abstract. Multidimensional inter-transactional association
rules extend the traditional association rules to describe more
general associations among items with multiple properties
across transactions. “After McDonald and Burger King open
branches, KFC will open a branch two months later and
one mile away” is an example of such rules. Since the num-
ber of potential inter-transactional association rules tends to
be extremely large, mining inter-transactional associations
poses more challenges on efficient processing than mining
traditional intra-transactional associations. In order to make
such association rule mining truly practical and computa-
tionally tractable, in this study we present a template model
to help users declare the interestingmultidimensional inter-
transactional associationsto be mined. With the guidance of
templates, several optimization techniques, i.e., joining, con-
verging, and speeding, are devised to speed up the discovery
of inter-transactional association rules. We show, through a
series of experiments on both synthetic and real-life data sets,
that these optimization techniques can yield significant per-
formance benefits.

Keywords: Intra-transactional/inter-transactional associa-
tion rules – Multidimensional context – Template model

1 Introduction

Since the problem of mining association rules was introduced
in [1], a large amount of work has been done in various di-
rections, including efficient, Apriori-like mining methods [4,
26,45,40–42,51,59,19], mining generalized, multi-level, or
quantitative association rules [48,49,23,21,20,37,28,25,44],
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association rule mining query languages [36,52], constraint-
based rule mining [27,38,50,52,6,24,18], incremental main-
tenance of discovered association rules [11], parallel and dis-
tributed mining [3,22,12], mining correlations and causal
structures [9,46,47], cyclic, interesting, and surprising asso-
ciation rule mining [39,43,13,10], mining frequent itemsets
with multiple supports [31,55], and so on.

Recently, the problem of miningmultidimensional inter-
transactional association ruleswas introduced in [33,32].
It extends the scope of mining association rules from tra-
ditional single-dimensional intra-transactionalassociations,
to multidimensional inter-transactionalassociations. Intra-
transactional associations are the associations among items
within the same transaction, where the notion of the trans-
action could be the items bought by thesame customer, the
events happening on thesame day, etc. However, an inter-
transactional association describes the association relation-
ships amongdifferent transactions, such as “if company A’s
stock goes up on day 1, B’s stock will go down on day 2, but
go up on day 4.” In this case, whether we treat company or
day as the unit of transaction, the associated items belong to
different transactions. Moreover, such an inter-transactional
association can be extended to associate multiple contextual
properties (e.g., time, space, temperature, etc.) in the same
rule, so that multidimensional inter-transactional associations
can be defined and discovered. For example, if a database
contains records about the time and location of buildings and
facilities of cities under development,wemaybeable to find2-
dimensional inter-transactional association rules such as “Af-
ter McDonald and Burger King open branches, KFC will open
a branch two months later and one mile away”, which involves
two dimensions -timeandspace.

Multidimensional inter-transactional association rules
provide a more detailed view of associations among items
because they intend to capture more rich contextual informa-
tion for association relationships. In comparison, the context
for traditional intra-transactional association rules is limited
to single transaction. Thus, from both a conceptual and al-
gorithmic point of view, traditional intra-transactional asso-
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ciation rules can be viewed as a simple case of multidimen-
sional inter-transactional association rules. By extension of
Apriori [4], two kinds of algorithms, named E/EH-Apriori
(Extended/Extended Hash-based Apriori) [33,32] and FITI
(First-Intra-Then-Inter) [53], were presented for mining inter-
transactional association rules from large data sets. Empirical
results indicate that with multidimensional inter-transactional
association rules, more comprehensive and interesting knowl-
edge can be detected, but this is at the expense of higher com-
putational cost than traditional association rule mining.

In order to make inter-transactional association rule min-
ing truly practical and computationally tractable, in this study
we propose a template model to help such rule discovery.
Previous work on traditional association rules demonstrated
theeffectivenessof constraint/query-basedassociationmining
[27,38,50,52,36,6,18]. It is applicable to inter-transactional
association mining as well, since users may also have certain
interesting inter-transactional contexts in mind, from which
to do the mining. For example, users may want to know how
stocka’s rising behaviortodayaffects other stocksnext week.
A rule like “If agoes down,bwill go down 243 days later”most
probably cannot inspire much confidence in stock traders.

Hence, one contribution of this paper is to provide users
with a set of constructors to specify the interestinginter-
transactional associations, so that mining can be focused
and the cost incurred is proportionate to what the users want
and get. Another contribution of the paper is that we develop
several optimization techniques, i.e.,joining, convergingand
speeding, for mining inter-transactional association rules un-
der rule templates. This allows us to significantly reduce the
amount of wasted work performed during the mining process.
We demonstrate the effectiveness of these techniques through
a series of experiments on both synthetic and real-life data
sets.

The remainder of the paper is organized as follows. In
Sect. 2, we provide a brief review of the basic concepts ofmul-
tidimensional inter-transactional association rules.A template
model for such extendedmultidimensional inter-transactional
association rules is then introduced in Sect. 3. Section 4 ex-
amines the template translation phase in detail. Several opti-
mization techniques and algorithmswhich utilize templates to
speed up the discovery of inter-transactional association rules
are discussed in Sects. 5 and 6. The experimental evaluation
on both synthetic and real-life data sets is presented in Sect. 7.
Section 8 reviews some closely related work. Finally, Sect. 9
concludes the paper with a brief discussion of future work.

2 Association among multidimensional transactions

In this section, we provide some background information
for multidimensional inter-transactional association rules.We
start with a database of multidimensional transactions, and
then define multidimensional inter-transactional association
rules.

2.1 Database of multidimensional transactions

In the traditional association mining, the database to bemined
is organized as a set of records identified by their transac-
tion IDs. Associations mined refer to the relationships among

Table 1.A sample database

ID x y Items

t1 0 0 {a, b, c}
t2 1 0 {b}
t3 2 0 {b, c}
t4 3 0 {d }
t5 4 0 {b, c}
t6 0 1 {b, c}
t7 1 1 {d}
t8 2 1 {a}
t9 3 1 {b}
t10 4 1 {a}
t11 0 2 {a}
t12 1 2 {b}
t13 2 2 {b, c}
t14 3 2 {b}
t15 4 2 {b}
t16 0 3 {b, c}
t17 1 3 {d}
t18 2 3 {a}
t19 3 3 {b, c}
t20 4 3 {a}

items within a transaction. That is, we only consider the items
themselves and ignore other attributes associated with such
transactions, such as time, place, and customers. However, it
is often the case that, such attributes, or contextual information
of transactions, are of main interests. In Table 1, we show a
sample database about fast food outlets. Each record contains
a list of items,a, b, c, andd representing different types of
outlets, such asMacDonald, KFC, Burger King, together with
their locations in terms ofx andy coordinates, which can be
viewed as the number of blocks from a reference point. The
graphical representation of the database is shown in Fig. 1.
For such a database, we may not only be interested in which
outlets are in the same block, but also the outlets in neighbor-
ing blocks, which requires us to consider associations among
items from different transactions. With such a motivation, we
extended the traditional intra-transactional association min-
ing to inter-transactional, multidimensional association min-
ing [33,32].

In multidimensional association mining, a transaction (in
a generic sense) contains two pieces of information, a list of
items and the context under which the items are considered.
Items in a transactional database could be of any type of ob-
jects, or events that are of interest to a particular application,
such as shopping items, shops, gas stations, restaurants, best
sellers, etc. The context is usually defined bym attributes,
d1, d2, . . . , dm, each of which represents a dimension. Typi-
cal dimensional attributes includetime, distance, temperature,
latitude, and so on. Note that the dimensional attributes could
be of any kind of attributes related to an application. In our
above sample database, we have two numerical dimensional
attributes,x andy, representing the number of blocks in two
directions with respect to a certain reference point. The con-
text for a stock movement database could be constructed by
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Fig. 1.A graphical representation of the sample database

one dimensional attributes,trading date. As another example,
a database of best sellers of a chain store, the items are the best
selling products, and the dimensional attributes could be the
date, or the branch of the store. The diversity of dimensional
attributes raises two issues. First, for continuous attributes,
items may be associated with different attribute values. For
example, the stock price may be different every time unit. In
this case, a continuous attribute needs to be discretized into in-
tervals based on the requirement of applications. For example,
we can choose a trading day as one interval, a transaction’s
item list contains all stocks whose prices are up during the
day. We can also choose one week as an interval when we are
concernedmore over long term trend. In this case, the item list
contains stocks whose prices are upwith respect to the closing
prices of last trading day of the week. Second, since we intend
to mine inter-transactional associations, transactions have to
be ordered. For example, wemay have an association rule say-
ing that “ItemA, a best seller at storeX, will be a best seller
at the next store within two-day’s time.” That is,Awill appear
in the next transaction in the order of attributeshop.While or-
dering of continuous attributes is easy to determine, ordering
nominal attributes seems unnatural from mathematical view
point. However, it can be done if we consider the semantics
of the attributes and applications. In our best seller example,
transactions can either be ordered by the size of shops, or ge-
ographical distances between shops. Similarly, the domain of
attributecustomercan be ordered based onageor incomeof
customers. Although rules mined with different ordering may
have different forms, users can prepare the data in such a way
that the results will be of most interest to them. Besides, we
may not need to have a total order for each dimension. If the
relative distance between every two transactions can be iden-
tified (neighbor), that is ok. Note that distance is weaker than
a total order.

With the above understanding, we assume that the do-
main of each dimensional attribute is divided into intervals,
and transactions are ordered before mining association rules.
A database of multidimensional transactions can be defined
as follows. LetI = {i1, i2, . . . , iω} denote a set of liter-
als called items, andD = {D1, D2, . . . , Dm} denote a set
of dimensional attributes. A multidimensional transactional
database is a set of transactionsT = {t1, t2, · · · , tn}, where
each transaction inT is in the form of(d1, d2, . . . , dm, I)

wheredi ∈ Di, 1 ≤ i ≤ m andI ∈ I. To emphasize that
(d1, d2, . . . , dm) is the context under which the transac-
tion occurs, we call it thecontextual pointof the transaction,
denoted as∆(d1, d2, ..., dm), and call such a multidimensional
transaction anextended transaction, and denote it as
∆(d1, d2, ..., dm)(t). Similarly, we can describe the occurrence
context of an itemi ∈ I byassociating anm-dimensional con-
textual point∆(d1, d2, ..., dm) with i.We call such kind of item
an extended itemand denote it as∆(d1, d2, ..., dm)(i). Us-
ing the notation, the multidimensional transactional database
shown in Table 1 can be transformed into the database shown
in Table 2.

Note that the contextual point of an extended trans-
action or an item, is just a point position in them-
dimensional space. Letni = (ni.d1, ni.d2, · · · , ni.dm)
and nj = (nj .d1, nj .d2, · · · , nj .dm) be two such
points, whose values on them dimensions are represented
asni.d1, ni.d2, . . . , ni.dm andnj .d1, nj .d2, . . . , nj .dm,
respectively. Two pointsni andnj are equal, if and only if
∀k(1 ≤ k ≤ m) (ni.dk = nj .dk). A relative distance
betweenni and nj is defined as∆〈ni, nj〉 = (nj .d1 −
ni.d1, nj .d2 − ni.d2, · · · , nj .dm − ni.dm). Thus, besides
the absolute representation(ni.d1, ni.d2, · · · , ni.dm) for
point ni, we can also represent it by indicating itsrela-
tive distance∆〈n0, ni〉 from a certainreference point n0.
Let N = {n1, n2, . . . , nu} be a set of points in an
m-dimensional space. Thelargest reference point of N
is the point n0, where ∀k (1 ≤ k ≤ m) (n0.dk =
min(n1.dk, n2.dk, . . . , nu.dk)).

Example 1Given two points,n1 = (0, 2), n2 = (1, 1),
in a two-dimensional space, the largest reference point of
{n1, n2} isn0 = (0, 1), sincen0.d1 = min(n1.d1, n2.d1) =
min(0, 1) = 0andn0.d2 = min(n1.d2, n2.d2) = min(2, 1)
= 1. ✷

In the following, we also refer to anm-dimensional point
ni through∆(ni.a1−n0.a1, ni.a2−n0.a2, ..., ni.am−n0.am) when
the reference pointn0 is clear in the context of discourse.

Given an extended item set,Ie = {∆(d1,1,...,d1,m)(i1),
∆(d2,1,...,d2,m)(i2), . . . , ∆(dk,1,...,dk,m)(ik)}, we call it anor-
malized extended item set, if the reference point of the ex-
tended items inIe is the largest reference point of the set,
that is, ∀j(1 ≤ j ≤ k) ∀i(1 ≤ i ≤ m) (min(dj,i) = 0).
Similarly, we call an extended transaction set anormalized
extended transaction set, if all extended item sets of those
transactions are normalized extended item sets.

Any non-normalized extended item (transaction) set can
be transformed into a normalized one through anormaliza-
tion function calledNorm, whose intention is to reposition
all the involved extended items (transactions) based on the
largest reference point of this set. We useINE andTNE to
denote the set of all possible normalized extended item sets
and normalized extended transaction sets, respectively.

The motivation of having normalized extended item sets
can be clearly seen using two such item sets circled in
Fig. 1: Ie = {∆(0,0)(a), ∆(0,1)(c), ∆(1,1)(d)} and I ′

e =
{∆(0,2)(a), ∆(0,3)(c), ∆(1,3)(d)}. Ie is normalized, andI ′

e

is not: the minimum value for bothx andy for all items inIe
is zero and the minimumy for I ′

e is 2. The normalized item
set forI ′

e is I
′′
e = {∆(0,0)(a), ∆(0,1)(c), ∆(1,1)(d)}, which
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Table 2.A transformed extended transactional database

Transaction (x, y, I) Extended transaction Extended Items

t1 (0, 0,{a, b, c}) ∆(0,0)(t1) ∆(0,0)(a), ∆(0,0)(b), ∆(0,0)(c)
t2 (1, 0,{b}) ∆(1,0)(t2) ∆(1,0)(b)
t3 (2, 0,{b, c}) ∆(2,0)(t3) ∆(2,0)(b), ∆(2,0)(c)
t4 (3, 0,{d }) ∆(3,0)(t4) ∆(3,0)(d)
t5 (4, 0,{b, c}) ∆(4,0)(t5) ∆(4,0)(b), ∆(4,0)(c)
t6 (0, 1,{b, c}) ∆(0,1)(t6) ∆(0,1)(b), ∆(0,1)(c)
t7 (1, 1,{d}) ∆(1,1)(t7) ∆(1,1)(d)
t8 (2, 1,{a}) ∆(2,1)(t8) ∆(2,1)(a)
t9 (3, 1,{b}) ∆(3,1)(t9) ∆(3,1)(b)
t10 (4, 1,{a}) ∆(4,1)(t10) ∆(4,1)(a)
t11 (0, 2,{a}) ∆(0,2)(t11) ∆(0,2)(a)
t12 (1, 2,{b}) ∆(1,2)(t12) ∆(1,2)(b)
t13 (2, 2,{b, c}) ∆(2,2)(t13) ∆(2,2)(b), ∆(2,2)(c)
t14 (3, 2,{b}) ∆(3,2)(t14) ∆(3,2)(b)
t15 (4, 2,{b}) ∆(4,2)(t15) ∆(4,2)(b)
t16 (0, 3,{b, c}) ∆(0,3)(t16) ∆(0,3)(b), ∆(0,3)(c)
t17 (1, 3,{d}) ∆(1,3)(t17) ∆(1,3)(d)
t18 (2, 3,{a}) ∆(2,3)(t18) ∆(2,3)(a)
t19 (3, 3,{b, c}) ∆(3,3)(t19) ∆(3,3)(b), ∆(3,3)(c)
t20 (4, 3,{a}) ∆(4,3)(t20) ∆(4,3)(a)

is actually the same asIe. That is, normalized itemset makes it
possible to find the same pattern in a multidimensional space.

Property 1Any superset of a normalized extended item
(transaction) set is also a normalized extended item (trans-
action) set. ✷

This property can be proven easily from the definition of
normalized extended item (transaction) set.

2.2 Multidimensional inter-transactional association rules

From the multidimensional transaction database de-
fined above, we can now define multidimensional inter-
transactional association rules.

Definition 1 A multidimensional inter-transactional asso-
ciation rule is an implication of the formX ⇒ Y , where
X,Y ⊂ IE , X ∪ Y ⊂ INE , andX ∩ Y = ∅. ✷

Different from classical intra-transactional association
rules, an inter-transactional association rule provides the oc-
currence context for associated items by means of a normal-
ized extended item setX ∪ Y . That is, all items in an asso-
ciation rule use the same reference point. For example, a rule
that predicts the stock pricemovement – “if stock ‘a’ increases
one day, and stock ‘c’ increases the following day, then most
probably stock ‘e’ will increase on the fourth day”, can be ex-
pressed by an one-dimensional inter-transactional association
rule “∆(0)(a), ∆(1)(c) ⇒ ∆(3)(e)”, where 0, 1, and 3 are
days from any trading date.

Similar to intra-transactional association rules,weusesup-
port andconfidenceas two major measurements for multidi-
mensional inter-transactional association rules. Traditionally,

the support of a ruleX ⇒ Y is the fraction of transactions
that containsX ∪Y over the whole transactions, and the con-
fidence of the rule is the fraction of transactions containingX
that also containY . However, to measure multidimensional
inter-transactional association rules, whichmay span different
transactions, the traditional support concept must be extended
accordingly from the originalsingle-transaction-basedto
transaction-set-based.

We first extend the concept of a transaction containing a
set of items.

Minimal containment relationship between an ex-
tended transaction set and a normalized extended item
set. We define thatTe containsIne, if and only if

(a) For∀∆(dx,1, dx,2, ..., dx,m)(ix) ∈ Ine, there exists an ex-
tended transaction∆(dx,1, dx,2, ..., dx,m)(t) ∈
Norm(Te), where (ix ∈ t), and

(b) there exists no other extended transaction setT ′
e, such that

T ′
e ⊂ Te and (a) holds.

Example 2Refer to our sample transaction database in
Fig. 1 and Table 2. GivenIne = {∆(0,0)(a), ∆(0,1)(c),
∆(1,1)(d)}, two extended transaction sets containIne.
They areT1 = {∆(0,0)(t1), ∆(0,1)(t6), ∆(1,1)(t7)} and
T2 = {∆(0,2)(t11), ∆(0,3)(t16), ∆(1,3)(t17)}. After nor-
malization, both of them have transactions at∆(0,0), ∆(0,1)
and ∆(1,1) with items a, c, and d, respectively. For
the same reason, we have three extended transaction sets
in the database, i.e.,{∆(0,0)(t1), ∆(0,1)(t6)}, {∆(0,2)(t11),
∆(0,3)(t16)} and{∆(2,1)(t8), ∆(2,2)(t13)} that containI ′

ne

= {∆(0,0)(a), ∆(0,1)(c)}. ✷

Now we define support and confidence of a multidimen-
sional inter-transactional association rule.
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Definition 2 Given a multidimensional transaction
database withN extended transactions, thesupport andcon-
fidenceof a multidimensional inter-transactional association
ruleX ⇒ Y is defined as:support(X ⇒ Y ) = |Txy|/N |
and confidence(X ⇒ Y ) = |Txy|/|Tx|, where|Txy| and
|Tx| are the number of extended transaction sets that contain
X ∪ Y andX, respectively, in the database. ✷

Example 3Suppose we have an inter-transactional associ-
ation rule “∆(0,0)(a), ∆(0,1)(c) ⇒ ∆(1,2)(d)” from the
database in Fig. 1, withX = {∆(0,0)(a), ∆(0,1)(c)} and
Y = {∆(1,1)(d)}. According to Example 2, the total num-
ber of extended transaction sets that containX ∪Y is 2. Thus,
support =|Txy|/N = 2/20 = 10%. Among the 3 extended
transaction sets that containX, only 2 of them containX∪Y .
Thus,confidence = |Txy|/|Tx| = 2/3 ≈ 67%. ✷

Although we extended the traditional association rules to
a multidimensional context, the property of Apriori based as-
sociation rule mining algorithm still holds:

Property 2 Given two normalized extended itemsetsX and
X ′ whereX ⊂ X ′, support(X) ≥ support(X ′). ✷

Proof.LetTX andTX′ denoteaset of extended transaction sets
that containX andX ′, respectively. It is obvious that|TX | ≥
|TX′ |, since for anyextended transaction settx′ containingX ′,
we can find a corresponding minimal extended transaction set
tx ⊂ tx′ containingX.
Therefore, we have
support(X) = |TX |

N ≥ |TX′ |
N = support(X ′). ✷

As the databases to be mined usually contain a huge
amount of data with the fast growing data collection technolo-
gies, Property 2 not only enables simplifying the computation
of the support level of extended itemsets, but also maintains
the important monotonic property that the support of an item-
set will not be larger than the support of any of its subsets.
We like to have this downward closure property since it is
the base of a large set of efficient association rule mining al-
gorithms. All existing algorithms that mine multidimensional
inter-transactional association rules use this property [33,32,
53].

3 A template model
for inter-transactional association rules

A frequently encountered problem in association rule min-
ing is that mining systems may return quite a large number
of rules. With inter-transactional associations which capture
more knowledge than intra-transactional ones, the number of
rules returned tends to be even more. Thus, from the stand-
points of both users and computational costs, it is necessary
to restrict the search space and perform human-centered data
mining. In this section, we present a template model to enable
users to specify what kinds of interestingmultidimensional
inter-transactional association rulesare to be mined.

3.1 A two-level template model

Templates are effective ways for users to specify the kind of
associations theywant tomine from amultidimensional trans-
actional database. Let’s use a stock movement database as an

example. The database has one dimensional attribute, trading
day and lists of stocks whose prices are up on the trading day.
An investor may be interested to know“When two stocks
rise together on the same day, which stock will go up one
week later?”. This is equivalent to association rules in the
form of ∆(0)(∗), ∆(0)(∗) ⇒ ∆(7)(∗), where * represents any
stock. Using this rule as the template, the mining algorithm
can reduce the search space dramatically. For example, it only
needs to examine transactions that are 7 days apart. More im-
portantly, the user will be only given those rules that s/he is
interested in. While using rules in some particular form as a
template can serve the purpose, there are some related issues.
For example, if a user would like to know“When two stocks
rise together on the same day, which stock will go up within a
week?”, s/hemay need to give a set of such template rules like
∆(0)(∗), ∆(0)(∗) ⇒ ∆(1)(∗), ∆(0)(∗), ∆(0)(∗) ⇒ ∆(2)(∗),
and etc. Obviously, it is rather ineffective to do so.

With the above observation, we propose a two-level tem-
plate model for association mining in multidimensional trans-
actional databases. Users specify high-leveltemplate expres-
sions, and the system transforms them intotemplate in-
stances. LetPoint be the set of all possible contextual points
in the transactional database in consideration. We call an ex-
tended item with uncertain contextual point and/or item an
extended item variable, denoted as∇(x), where∇ ∈ Point
andx ∈ I. A multidimensional inter-transactional asso-
ciation rule template expressionconsists of a set of ex-
tended item variables that satisfy indicated constraints in the
form of ∇1(x1), ∇2(x2), . . . , ∇p(xp) ⇒ ∇p+1(xp+1),
. . . ,∇p+q(xp+q) | (Citem, Ccontext),where∇1(x1),∇2(x2),
. . . ,∇p+q(xp+q) are extended item variables,Citem is a con-
straint Boolean expression on itemsx1, x2, . . . , xp+q, and
Ccontext is a constraint Boolean expression on item contexts
∇1,∇2, . . . ,∇p+q. All contextual points∇i(s) in a rule tem-
plate should be positionedwith respect to a common reference
point. The above rule template implies that only association
rules satisfying bothCitem andCcontext are to be detected.

Example 4“∇1(x1), ∇2(x2) ⇒
∇3(x3) | (Citem, Ccontext)”, where Citem : true
and Ccontext : (∇1 = ∇2 = ∆(0)) ∧ (0 <
DistPoint(1,∇2,∇3) < 7) is a template expression,
with three variables.DistPoint is a function which returns
the distance between two contextual points along a certain
specified dimension (dimension 1 in this example). This
template expression specifies all the association rules with
two items in the antecedent and one item in the consequent.
The contextual point of the two antecedent items are the same
and the consequent item’s is seven unit apart. In the context of
our stock movement example, those association rules answer
the query “When two stocks rise together on the same day,
which stock will go up within a week?”. ✷

Rule template instances are instantiation of corresponding
rule template expressions, where extended item variables are
instantiated to actual contextual points.

Example 5“∆(0)(∗), ∆(0)(∗) ⇒ ∆(1)(∗)”, “∆(0)(∗),
∆(0)(∗) ⇒ ∆(2)(∗)”, · · · , “∆(0)(∗), ∆(0)(∗) ⇒ ∆(7)(∗)”
are seven template instances corresponding to the template
expression in the above example. Because no constraints on
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x1, x2 andx3, the three item variables are instantiated to any
(*). ✷

As item constraints have been extensively studied in the
traditional association rulemining [27,38,50,52,36,6,24,18],
we focus on context constraints in this paper. The Boolean
expressionCcontext is in a conjunctive normal formc1 ∧ c2 ∧
. . .∧ cr, where eachci (1 ≤ i ≤ r) is of the formci,1 ∨ ci,2 ∨
. . . ∨ ci,t. Each allowedci,j (1 ≤ i ≤ r, 1 ≤ j ≤ t) is a
constraint defined in the following sections.

With the two-level template model, mining multidimen-
sional inter-transactional association rules consists of four
phases:template translation, mining planning, frequent nor-
malized extended itemset discovery, and inter-transactional
association rule generation.

Phase-1 (template translation)
The input of this phase is user-specified high-level tem-

plate expressions that specify a set of Boolean constraints that
extended item variables of the rules should satisfy (as shown
in Example 4). Such template expressions are transformed
during this phase to produce a set of template instances (as
shown in Example 5), with all the contexts of extended item
variables being instantiated. A template may imply one or
severaltemplate instancesto which the rules discovered later
must conform.

The template translation phase interprets and translates
template expressions given as input by users into a set of tem-
plate instances. In a template instance, all the contexts of ex-
tended item variables are instantiated so as to provide concrete
guidance for the following mining processes. Section 4 exam-
ines this template translation procedure in detail.

Phase-2 (mining planning)
Like traditional association rule mining, we first discover

all normalized extended itemsets with support not less than a
user-specifiedminsup threshold. We call these itemsetsfre-
quent normalized extended itemsets. From the frequent item-
sets discovered, we then derive inter-transactional association
rules with confidence not less than a user-specifiedminconf
threshold.

Different from traditional itemsets where all items are
within the same transaction, an extendedk-itemset under the
circumstance of inter-transactional associationsmay span sev-
eral transactions. For example, to get one-dimensional inter-
transactional rules
“∆(0)(∗), ∆(0)(∗) ⇒ ∆(7)(∗)” and
“∆(0)(∗), ∆(0)(∗) ⇒ ∆(14)(∗)”, we need to identify fre-
quent3-itemsets by counting all those candidate3-itemsets
C∗

3 = {{∆(0)(∗), ∆(0)(∗), ∆(7)(∗)}, {∆(0)(∗), ∆(0)(∗),
∆(14)(∗)}} across every 8 and 15 consecutive transactions.1

The purpose of this phase is to identify candidate item-
setsC∗

k to count at each passk(≤ RuleLen), and decide the
generation plan for candidateRuleLen-itemsets. Details for
mining plan generation are described in Sect. 5.

1 In the paper, we useC∗
k to represent the set of candidate itemsets

with detailed contextual information, andCk to represent the set of
candidate itemsets with both detailed contexts and item IDs. The
same forL∗

k andLk.

Phase-3 (frequent normalized extended itemset discov-
ery)

In this phase, we find the set of all frequent normalized
extended itemsets identified in Phase-2. Two algorithms for
generating frequent normalized extended itemsets based on
different mining plans are described in Sect. 6.

Phase-4 (inter-transactional association rule genera-
tion)

Using the frequent normalized extended itemsets, we can
find the desired inter-transactional association rules. The gen-
eration of inter-transactional association rules is similar to the
generation of classical association rules [4] with minor mod-
ifications.

In the following sections, we describe how contextual con-
straints are defined.

3.2 Contextual constraints in templates

In a dimensional space, in addition to contextual points,
we introduce the concept ofscope. A contextual scope is
the subspace delimited by two contextual pointsPs =
∆(ds1 ,ds2 ,...,dsm ) andPe = ∆(de1 ,de2 ,...,dem ) where ∀k (1 ≤
k ≤ m) (dsk

≤ dek
), denoted ass = [Ps, Pe]. A contextual

constraint is nomore a predicate on contextual points and con-
textual scopes. It is defined based on a set of context-oriented
operators and context-oriented functions.

3.2.1 Context-oriented operations

We first define a set of operators whose operands are ei-
ther contextual points or contextual spaces. Letp and p′
be two contextual points, wherep = ∆(d1,d2,...,dm) and
p′ = ∆(d′

1,d
′
2,...,d

′
m). Let s ands′ be two contextual scopes,

wheres = [ss, se] = [∆(ds1 ,ds2 ,...,dsm ), ∆(de1 ,de2 ,...,dem )]
ands′ = [s′s, s

′
e] = [∆(d′

s1
,d′

s2
,...,d′

sm
), ∆(d′

e1
,d′

e2
,...,d′

em
)].

We have the following context-oriented operators:
Operators on contextual points
The operators=,�,≺ on two contextual pointsp andp′

are defined as follows:

• p = p′, iff ∀k (1 ≤ k ≤ m) (dk = d′
k).• p � p′, iff ∀k (1 ≤ k ≤ m) (dk ≤ d′
k).• p ≺ p′, iff ∀k (1 ≤ k ≤ m) (dk ≤ d′
k) ∧ ∃k (1 ≤ k ≤

m) (dk < d′
k).

Operators on a contextual point and a scope
The operatorsinner, priori, rear on a contextual point

p and a contextual scopes = [ss, se] are defined as follows:

• inner(p, s) = true, iff ss � p � se
• prior(p, s) = true, iff p ≺ ss
• rear(p, s) = true, iff se ≺ p

Operators on contextual scopes
The operatorsprecedent, inclusive, overlap on two

contextual scopess = [ss, se] ands′ = [s′s, s
′
e] are defined as

follows:
• precedent(s, s′) = true, iff se ≺ s′s.
• inclusive(s, s′) = true, iff ss � s′s ∧ s′e � se.
• overlap(s, s′) = true, iff there exists a pointpi =
∆(di1 ,di2 ,...,dim ), such thatinner(pi, s) ∧ inner(pi, s′).
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3.2.2 Context-oriented functions

Besides the above context-oriented operators, we define the
following five functions in anm-dimensional space.

• Size(k, s) returns the size of the contextual scopes
(i.e., number of dimensional values) on the kth dimension,
which isdek

− dsk
+ 1.

• DistPoint(k, p, p′) returns the relative distance between
the two pointsp andp′ on the kth dimension, which is
d′
k − dk.• DistScope(k, s, s′) returns the relative distance between

the two scopess ands′ on the kth dimension, which is
d′
sk

− dek
. Note thatDistScope is only meaningful when

the two scopes have precedent relationship.
• DistPointScope(k, p, s) returns the relative distance
between contextual pointp and contextual scopes on the
kth dimension. It equals to(dsk

−dk)whenprior(p, s) =
true; and(dk − dek

) whenrear(p, s) = true. Note that
DistPointScope is onlymeaningful when the point is not
inside the scope.

• Intersect(s, s′) returns the overlapped scope betweens
ands′. It equals tos′ wheninclusive(s, s′) = true; and
[∆(d′

s1
,d′

s2
,...,d′

sm
), ∆(de1 ,de2 ,...,dem )] when

overlap(s, s′) = true. Note thatIntersect is onlymean-
ingful when the two scopeshaveeither inclusive or overlap
relationship.

3.2.3 Contextual constraints

With the above defined context-oriented operators and func-
tions, we can define six classes of contextual constraints as
follows:

1. Constant constraints.
• Point constraint∇ = ∆(d1,d2,...,dm), indicating that∇

is at the point∆(d1,d2,...,dm).
• Scope constraint
inner(∇, [∆(ds1 ,...,dsm ), ∆(de1 ,...,dem )]), indicat-
ing that ∇ lies inside the scope[∆(ds1 ,...,dsm ),

∆(de1 ,...,dem )].
2. Constraints between two points∇1,∇2 ∈ Point.

• ∇1 θ ∇2, whereθ is one of the operators in{=, �
, ≺}.

• DistPoint(k,∇1,∇2) θ v, where1 ≤ k ≤ m, v is
a nonnegative integer, andθ is one of the operators in
{=,  =, <,≤, >,≥}.

3. Constraints on one scopes ∈ Scope.
• Size(k, s) θ v, where1 ≤ k ≤ m, s ∈ Scope, v

is a positive integer, andθ is one of the operators in
{=,  =, <,≤, >,≥}.

4. Constraints between two scopess1, s2 ∈ Scope.
• θ (s1, s2), where θ is one of the operators in
{precedent, inclusive, overlap}.

• DistScope(k, s1, s2) θ v, where1 ≤ k ≤ m, v is a
positive integer, andθ is one of the operators in{=,  =
, <,≤, >,≥}.

5. Constraints between a point∇ ∈ Point and a scopes ∈
Scope.
• θ (∇, s), whereθ is one of the operators in{inner,
prior, rear}.

• DistPointScope(k,∇, s) θ v, where1 ≤ k ≤ m, v
is a positive integer, andθ is one of the operators in
{=,  =, <,≤, >,≥}.

6. Aggregate constraints.
• agg(X) θ v, whereagg is one of the aggregate func-

tions in {min,max}, X is one of the following
context-oriented functions:DistPoint(k,∇1,∇2),
DistScope(k, s1, s2), DistPointScope(k,∇, s),
Size(k, s), andv is a nonnegative integer.

Any contextual scope in the above constraints can be
obtained and substituted by two other scopes through the
Intersect function.

3.3 Examples

We conclude our discussion about the template model with
a few example contextual expressions in the context of stock
movement databases. This will illustrate the expressive power
of our template expressions to a certain extent.

Example 6“When two stocks rise together on the same day,
which stock will go up one or two weeks later?” ✷

One template for this association can be
“∇1(x1), ∇2(x2) ⇒ ∇3(x3) | (Citem, Ccontext)”, where
Citem : true and Ccontext : (∇1 = ∇2 = ∆(0)) ∧
(DistPoint(1,∇2,∇3) = 7 ∨ DistPoint(1,∇2,∇3) =
14).

Example 7“If stock ‘a’ rises 1 day, andwithin the following 2
days another different stock rises, will stock ‘a’ continuously
go up within the next 3 days following the rise of the second
stock?” ✷

One template for this association can be
“∇1(a), ∇2(x2) ⇒ ∇3(a) | (Citem, Ccontext)”, where
Citem : (x2  = a) and Ccontext : (∇1 = ∆(0)) ∧
inner(∇2, [∆(1), ∆(2)]) ∧ (1 ≤ DistPoint(1,∇2,∇3) ≤
3).

Example 8“If stock ‘a’rises 1day, anddirectly after that there
is a stock rising within a periodwhosemaximal span is 2 days,
then which stock will rise during the next period of the same
length?” ✷

One template for this association can be
“∇1(a),∇2(x2) ⇒ ∇3(x3) | (Citem, Ccontext)” where
Citem : true and Ccontext : (∇1 = ∆(0)) ∧ inner(∇2, s) ∧
DistPointScope(1,∇1, s) = 1 ∧ max(Size(1, s)) =
2 ∧ inner(∇3, s

′) ∧ Size(1, s) = Size(1, s′) ∧
DistScope(1, s, s′) = 1.

4 Template translation phase

We provide some heuristics for the translation of a template
into template instances. It proceeds briefly in the following
five steps:

Step 1: unify comparison constraints with equal com-
parison operator (=)
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The comparison constraints(X θ v) involving one of
the comparison operators in{>,≥<,≤,  =} and an integer
v are first identified from the template Boolean expression
Ccontext. This kind of constraints includesSize(k, s) θ v,
DistPoint(k,∇1,∇2) θ v, DistScope(k, s1, s2) θ v, and
DistPointScope(k,∇, s) θ v, where ∇1,∇2 ∈ Point
and s1, s2, s ∈ Scope. We then transform each of
them (X θ v) into a set of disjunctive constraints
(X = w1) ∨ . . . ∨ (X = ws), using only the equal
comparison operator (=) plus integersw1, w2, . . . , ws that
satisfy the constrained scope requirement (θ v). For example,
the comparison constraints in the template in Example 7
“(1 ≤ DistPoint(1,∇2,∇2) ≤ 3)” can be translated into 3
disjunctive constraints“DistPoint(1,∇2,∇3) = 1 ∨
DistPoint(1,∇2,∇3) = 2 ∨ DistPoint(1,∇2,∇3) = 3.”

In case that users only indicate a lower bound or a upper
bound of a comparison constraint like
“DistPoint(1,∇2,∇3) > 1”, we can invoke default con-
straints forX basedon theobservation that in real-world appli-
cations, users are usually interested in associations happening
within a certain range, such as gas stations and fast-food out-
lets within 50 miles, stock indexes rising within a week, etc..
Here, we assume that for an extended itemset to be of inter-
est, there always exists a maximal contextual span along each
dimension, i.e.,maxspan1,maxspan2, . . . ,maxspanm.By
default, the following constraints are always valid.

1) 0 ≤ DistPoint(k,∇1,∇2) ≤ maxspank − 1
2) 1 ≤ DistScope(k, s1, s2) ≤ maxspank − 1
3) 1 ≤ DistPointScope(k,∇, s) ≤ maxspank − 1
4) 1 ≤ Size(k, s) ≤ maxspank
After Step 1, one comparison constraint (Xθv) is

converted into several constraints with equal comparison
operator. At the first glance, Step 1 may result in a significant
increase in the size of templates. Nevertheless, considering
in quite a few applications, users are interested in association
relationships within a certain narrow scope, i.e., the number
of valid values regardingX in (X θ v) may not be huge, such
an increase in the size of templates may not be as significant
as expected.

Step 2: unify aggregate constraints with equal compari-
son operator (=)

Similar to comparison constraints, aggregate constraints
(agg(X) θ v) involving aggregate operators (max,min) in
the template Boolean expression can be transformed into a set
of disjunctive constraints using equal comparison operator (=)
plus a set of integers. The above default constraints onX (i.e.,
Size(k, s), DistPoint(k,∇1,∇2), DistScope(k, s1, s2),
andDistPointScope(k,∇, s)) can be applied when users
boundX with onlymax ormin. For instance, by taking the
default constraint 4) into account, the aggregate constraint in
Example 8 “max(Size(1, s1)) = 2” can be translated into 2
constraints “Size(1, s1) = 1 ∨ Size(1, s1) = 2”.

Step 3: augment the template Boolean constraints for com-
pleteness

There exists the situation that users do not indicate any
constraint for some∇i(s) (1 ≤ i ≤ p + q) in the template
Boolean expressionCcontext. The aim of step 3 is to check
and augment a default constant contextual scope constraint

“ inner(∇i, [∆(0,0,...,0),

∆(maxspan1,maxspan2,...,maxspanm)])”

for these∇i(s), based on the fact that each extended itemset
is supposed to occur under a maximal contextual scope of
interest to applications.

Step 4: transform the template Boolean constraint ex-
pression into a disjunctive normal form

For convenience, users declare their context constraint
expressionsCcontext(s) in a conjunctive normal form.
After Step 3, these template Boolean expressions are like
(c1,1∨c1,2∨. . .∨c1,t1)∧ (c2,1∨c2,2∨. . .∨c2,t2)∧ . . . ∧ (cr,1
∨cr,2 ∨ . . . ∨ cr,tr ).

To facilitate the translation of one template expression
into several detailed template instances in the next step, we
transform it into an equivalent disjunctive normal form like
(c1,1∧c2,1∧. . .∧cr,1)∨ (c1,2∧c2,1∧. . .∧cr,1)∨ . . . ∨ (c1,t1∧
c2,t2 ∧ . . . ∧ cr,tr ), so that each conjunctive component in
the formula can be instantiated independently into a set of
template instances in Step 5. For example, the expression
“(∇1 = ∇2 = ∆(0)) ∧ (DistPoint(1,∇2,∇3) = 7 ∨
DistPoint(1,∇2, ∇3) = 14)” in Example 6 can be con-
verted into “(∇1 = ∇2 = ∆(0) ∧ DistPoint(1,∇2,∇3) =
7) ∨ (∇1 = ∇2 = ∆(0) ∧ DistPoint(1,∇2,∇3) = 14)”.

Step 5: instantiate extended item variables with constant
points

The last step is to instantiate each∇i (1 ≤ i ≤ p + q)
in the template rule with a certain constant point based
on the given constraints. Such an instantiation process
is conducted for each conjunctive constraint component
c1 ∧ c2 ∧ . . . ∧ cr obtained from Step 4. For example,
according to the conjunctive constraints in Example 6
“(∇1 = ∇2 = ∆(0)) ∧ DistPoint(1,∇2,∇3) = 7)”, we
can infer that “∇1 = ∇2 = ∆(0)” and “∇3 = ∆(7)”. Hence,
the original template rule “∇1(x1),∇2(x2) ⇒ ∇3(x3)” can
be translated into one template instance “∆(0)(x1), ∆(0)(x2)
⇒ ∆(7)(x3)”. In addition, from the second conjunctive
component “(∇1 = ∇2 = ∆(0) ∧
DistPoint(1,∇2,∇3) = 14)”, we can derive another tem-
plate instance “∆(0)(x1), ∆(0)(x2) ⇒ ∆(14)(x3)” for the
template in Example 6.

Example 9Referring to Example 6, after Step 5, the tem-
plate “∇1(x1), ∇2(x2) ⇒ ∇3(x3)′′ where Ccontext :
(∇1 = ∇2 = ∆(0)) ∧ (DistPoint(1,∇2,∇3) = 7 ∨
DistPoint(1,∇2,∇3) = 14) can be translated into two
template instances:1) ∆(0)(x1), ∆(0)(x2) ⇒ ∆(7)(x3);
2)∆(0)(x1), ∆(0)(x2) ⇒ ∆(14)(x3). ✷

For a∇i bounded with a contextual scope, we first in-
stantiate the scope with a constant contextual scope, and
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then assign each point that lies within this scope to∇i.
Note that the default constraint “inner(∇i, [∆(0,0,...,0),
∆(maxspan1,maxspan2,...,maxspanm)])” always sits behind
during this translation step.

Example 10Theconstraint “inner(∇2, [∆(1), ∆(2)])” inEx-
ample 7 is translated into∇2 = ∆(1) or ∇2 = ∆(2), from
which we can derive six template instances for the template
“∇1(a), ∇2(x2) ⇒ ∇3(a)”, where
Ccontext : (∇1 = ∆(0)) ∧ inner(∇2, [∆(1), ∆(2)]) ∧
(1 ≤ DistPoint(1,∇2,∇3) ≤ 3) :
1) ∆(0)(a), ∆(1)(x2) ⇒ ∆(2)(a); 2) ∆(0)(a), ∆(1)(x2) ⇒
∆(3)(a); 3)∆(0)(a), ∆(1)(x2) ⇒ ∆(4)(a);
4) ∆(0)(a), ∆(2)(x2) ⇒ ∆(3)(a); 5) ∆(0)(a), ∆(2)(x2) ⇒
∆(4)(a); 6)∆(0)(a), ∆(2)(x2) ⇒ ∆(5)(a). ✷

Example 11Two contextual scopess ands′ are involved in
Example 8. According to the restrictions
“DistPointScope(1, ∆(0), s) = 1 ∧ max(Size(1, s)) =
2 ∧ Size(1, s) = Size(1, s′) ∧ DistScope(1, s, s′) =
1”, we can derive two possible pairs(s, s′) where (s =
[∆(1), ∆(1)], s′ = [∆(2), ∆(2)]) and(s = [∆(1), ∆(2)], s′ =
[∆(3), ∆(4)]). The constraint “inner(∇2, s) ∧ inner(∇3,
s′)” implies that “inner(∇2, [∆(1), ∆(1)]) ∧ inner(∇3,
[∆(2), ∆(2)])”, or “ inner(∇2, [∆(1), ∆(2)]) ∧ inner(∇3,
[∆(3), ∆(4)]).”

From each of them, we can further instantiate∇2 and∇3
by enumerating all possible constant points within the cor-
responding scope, and obtain the following five template in-
stances for the template in Example 8
“∇1(a),∇2(x2) ⇒ ∇3(x3)”:
1) ∆(0)(a), ∆(1)(x2) ⇒ ∆(2)(x3); 2) ∆(0)(a), ∆(1)(x2) ⇒
∆(3)(x3); 3) ∆(0)(a), ∆(1)(x2) ⇒ ∆(4)(x3); 4) ∆(0)(a),
∆(2)(x2) ⇒ ∆(3)(x3); 5) ∆(0)(a), ∆(2)(x2) ⇒ ∆(4)(x3).

✷

Property 3All template instances implied by a template can
be completely generated by the Template Translation Phase.

✷

Proof. Steps 1–3 perform semantically equivalent template
translation. The simple syntax conversion of the template
Boolean constraint expression into an equivalent disjunctive
normal form, performed in Step 4, also does not alter the se-
mantics of the template constraint obtained after Step 3, mak-
ing the final template instantiation in Step 5 complete.✷

5 Mining planning phase

Miningmultidimensional inter-transactional association rules
is a computationally intensive problem, requiring consid-
erable search efforts compared to the classical association
rule mining. Template instances specify the patterns of inter-
transactional association rules. We need to find all rules that
satisfy the template (not a part of template). It is goal-driven
mining. Planning is needed. There are two basic planning
strategies: separate mining plan and joint mining plan. The
separate mining plan is to deal with a single template instance
at a time. The basic idea of separate mining is to include all

necessary extendedj-itemsets in the plan for finding an ex-
tendedk-itemset template instance (j < k). It is based on
the observation: the more extendedj-itemsets are included in
the plan, the more opportunities the uninteresting rules can be
pruned in an early stage. The joint mining plan is to deal with
multiple template instances together. Different from separate
mining plan, it attempts to approach the goals as quickly as
possible. In other words, it is based on the observation that
spending time for intermediate extended itemsets is unneces-
sarily large. In order to approach the goal, three techniques
are proposed: joining, converging and speeding. Joining tech-
nique is to join two arbitraryk1-itemset andk2-itemset and
form a possible up to (k1+k2-1)-itemset. The idea of converg-
ing is to find possible shortest paths for all template instances
by further utilizing the joining technique. The speeding tech-
nique is to identify the starting time of adopting joining and
converging.

We illustrate our techniques using 1-dimensional inter-
transactional association mining in this paper. Our techniques
are applicable to n-dimensional inter-transactional association
mining. To simplify expressions, we remove bracket ( ) which
surrounds coordinates of contextual points so as to use∆i for
∆(i). In addition,itemset andextended itemsetcan be used
interchangeably in the following discussion.

5.1 Separate mining plan

One simple mining plan is to treat each template instance
belonging to one rule template separately, and identify can-
didatesC∗

k (1 ≤ k ≤ RuleLen) for each individual tem-
plate instance in a similar way as Apriori-Gen does [4]. That
is, each candidatek-itemsetX ′′ = {∆d1(x1), ∆d2(x2), · · · ,
∆dk−1(xk−1), ∆dk

(xk)} in Ck is generated by joining
two frequent (k-1)-itemsetsX,X ′ ∈ Lk−1, whereX =
{∆d1(x1), ∆d2(x2), · · · , ∆dk−2(xk−2), ∆dk−1(xk−1)} and
X ′ = {∆d1(x1), ∆d2(x2), · · · , ∆dk−2(xk−2), ∆dk

(xk)},
whose first (k-2) extended items are the same, and
“(xk−1 < xk) ∨ precedent(∆dk−1 , ∆dk

)”. Note that
all candidate and frequent itemsets under study are nor-
malized by default. Due to the monotonicity property
that “any subset of a frequent itemset must be fre-
quent”, Lk−1 also includes all the normalized subsets of
X ′′, i.e., Norm({∆d2(x2), ∆d3(x3), · · · , ∆dk−1(xk−1),
∆dk

(xk)}), Norm({∆d1(x1), ∆d3(x3), · · · , ∆dk−1(xk−1),
∆dk

(xk)}), · · · , Norm({∆d1(x1), · · · , ∆dk−3(xk−3),
∆dk−1(xk−1), ∆dk

(xk)}) for pruning purpose. For each tem-
plate instance, candidate itemsetsC∗

k are designated from
k = RuleLen to 1 as above, at which the mining process
will target later on. Since such a plan deals with a template
instance separately, we refer to it as theseparatemining plan.

Example 12Suppose we have two template instances af-
ter template translation: “∆0(∗), ∆2(∗) ⇒ ∆4(∗), ∆6(∗)”
and “∆0(∗), ∆1(∗) ⇒ ∆3(∗), ∆5(∗)”. Table 3 illustrates
candidate itemsets identified by theseparatemethod. To
detect rules conforming to the first template instance,
we need to calculate the supports of all candidate 4-
itemsets{∆0(∗), ∆2(∗), ∆4(∗), ∆6(∗)} in C∗

4 to get L∗
4.

Before that, two such kinds of candidate 3-itemsets as
{∆0(∗), ∆2(∗), ∆4(∗)} and {∆0(∗), ∆2(∗), ∆6(∗)} should
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Table 3.Theseparatemining plan: candidate itemsets to be counted. NoteW -Len gives the length
of the minimal window that coversC∗

i in the 1-dimensional space

∆0(∗), ∆2(∗)⇒ ∆4(∗), ∆6(∗)
{∆0(∗)} {∆0(∗), ∆2(∗)} {∆0(∗), ∆2(∗), ∆4(∗)} {∆0(∗), ∆2(∗), ∆4(∗), ∆6(∗)}
{∆2(∗)} {∆0(∗), ∆4(∗)} {∆0(∗), ∆2(∗), ∆6(∗)}
{∆4(∗)} {∆0(∗), ∆6(∗)} {∆0(∗), ∆4(∗), ∆6(∗)}
{∆6(∗)}

∆0(∗), ∆1(∗)⇒ ∆3(∗), ∆5(∗)
{∆0(∗)} {∆0(∗), ∆1(∗)} {∆0(∗), ∆1(∗), ∆3(∗)} {∆0(∗), ∆1(∗), ∆3(∗), ∆5(∗)}
{∆1(∗)} {∆0(∗), ∆2(∗)} {∆0(∗), ∆1(∗), ∆5(∗)}
{∆3(∗)} {∆0(∗), ∆3(∗)} {∆0(∗), ∆2(∗), ∆4(∗)}
{∆5(∗)} {∆0(∗), ∆4(∗)} {∆0(∗), ∆3(∗), ∆5(∗)}

{∆0(∗), ∆5(∗)}
C∗

1 C∗
2 C∗

3 C∗
4

|C∗
1 | = 7 |C∗

2 | = 6 |C∗
3 | = 6 |C∗

4 | = 2
W -Len(C∗

1 ) = 7 W -Len(C∗
2 ) = 7 W -Len(C∗

3 ) = 7 W -Len(C∗
4 ) = 7

be counted in order to generate candidate 4-itemsets. For
pruning purpose, another two subsets of{∆0(∗), ∆2(∗),
∆4(∗), ∆6(∗)} after normalization, i.e.,Norm({∆0(∗),
∆4(∗), ∆6(∗)}) = {∆0(∗), ∆4(∗), ∆6(∗)} and
Norm({∆2(∗), ∆4(∗), ∆6(∗)}) = {∆0(∗), ∆2(∗), ∆4(∗)},
will also go toC∗

3 . Candidate itemsets under the second tem-
plate instance are decided in a similar way. ✷

5.2 Joint mining plan

Counting each candidate itemset in Table 3 requires searching
several transactions each time. One question we pose is that
“can we just count those necessary candidate itemsets which
span as few transactions as possible ?” In this section, we
discuss several techniques, namely,joining, convergingand
speeding, based on the observation that “reducing the length
of the minimal window that covers candidate extended itemsets
can substantially reduce the running time of frequent itemsets
detection.”

In inter-transactional associations, both items and their oc-
currence contexts are captured within an itemset. For exam-
ple, from two itemsetsU = {∆0(∗), ∆2(∗), ∆3(∗)} andV =
{∆0(∗), ∆1(∗), ∆7(∗), ∆11(∗)}, we know that the last two
items ofU appear in two consecutive transactions, similar to
the first two items inV . Thus, besides the traditional way
of joining two (k-1)-itemsets based on the firstk-2 common
extended items, such common relative positions also offer an-
other possibility for joining two itemsets which could be of
different size. In the following, we define thejoinable condi-
tion for two extended itemsets and give ajoin operator.

Definition 3 Given two itemsets
U = {∆du1

(u1), ∆du2
(u2), · · · , ∆dus

(us)} and
V = {∆dv1

(v1), ∆dv2
(v2), · · · , ∆dvt

(vt)}, V and U are
joinable if and only if there existU ′ ⊂ U andV ′ ⊂ V that
satisfy the following two conditions:

1)U ′ andV ′ has equal number of extended items, denoted
as|U ′| = |V ′|.

Table 4.A join example betweenU andV

U ∆0(a) ∆2(b) ∆4(c)
V ∆0(b) ∆2(c) ∆4(d)
U ⊕ V ∆0(a) ∆2(b) ∆4(c) ∆6(d)

2) There exists a nonnegative integerd, such that for any
∆dui

(ui) ∈ U ′, there exists a∆dvi
(vi) ∈ V ′, where(ui =

vi) and(dui = dvi + d). We calld the joinable distance. ✷

Example 13For two itemsets
V1 = {∆0(a), ∆2(b), ∆3(c), ∆6(d)} and
U1 = {∆0(b), ∆4(d), ∆9(e)}, there exist a
V ′

1 = {∆2(b), ∆6(d)} and aU ′
1 = {∆0(b), ∆4(d)} satisfying

the above two defined conditions. Therefore, we sayV1 and
U1 are joinable, and the joinable distance is2. Comparatively,
V2 = {∆0(a), ∆2(b), ∆4(c)} andU2 = {∆0(d), ∆3(d)} are
not joinable, as there exist noV ′

2 ⊂ V2 andU ′
2 ⊂ U2 that

satisfy the above two conditions. ✷

Definition 4 Assume that
U = {∆du1

(u1), ∆du2
(u2), · · · , ∆dus

(us)} and
V = {∆dv1

(v1), ∆dv2
(v2), · · · , ∆dvt

(vt)} are joinable on
U ′ ⊂ U and V ′ ⊂ V , with d as the joinable distance.U
join V is given as(U U ′ ⊕V ′ V ) = U ∪ W, whereW =
{∆dvi

+d(vi) | (∆dvi
(vi) ∈ V ) ∧ (∆dvi

(vi) /∈ V ′)}. ✷

Example 14LetU = {∆0(a), ∆2(b), ∆4(c)} and
V = {∆0(b), ∆2(c), ∆4(d)}.The result ofU joinV onU ′ and
V ′ whereU ′ = {∆2(b), ∆4(c)} andV ′ = {∆0(b), ∆2(c)}
is {∆0(a), ∆2(b), ∆4(c), ∆6(d)}, as shown in Table 4. The
joinable distance is 2.
Let U1 = {∆0(a), ∆1(b)} andV1 = V = {∆0(b), ∆2(c),
∆4(d)}. The result ofU1 join V1 on U ′

1 = {∆1(b)} and
V ′

1 = {∆0(b)} is {∆0(a), ∆1(b), ∆3(c), ∆5(d)}. The join-
able distance is 1. ✷

Along with thejoining operation, the next question arises:
“which itemsets are suitable to bejoined in order to gen-
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erate candidateRuleLen-itemsets which need less count-
ing effort?” One technique we use is calledconverging,
which converges all template instances together. To illus-
trate, let us return to the previous two template instances
“∆0(∗), ∆2(∗) ⇒ ∆4(∗), ∆6(∗)” and “∆0(∗), ∆1(∗) ⇒
∆3(∗), ∆5(∗)”. We note that some common relative posi-
tions exist either within or among template instances. Like
{∆0(∗), ∆2(∗), ∆4(∗)}, {∆2(∗), ∆4(∗), ∆6(∗)} in the for-
mer, and{∆1(∗), ∆3(∗), ∆5(∗)} in the latter, they actually
convey the same contextual information (i.e, for every alter-
nate transaction). Based on such observation, we employ three
heuristics to help identify those joinable itemsets: (a) appear-
ing in template instances as frequently as possible; (b) with a
joinable size as large as possible; and (c) with a window that
covers joinable items as small as possible.

Table 5 shows thejoining mining plan, which derives the
targetC∗

4 by {∆0(∗), ∆1(∗)} join {∆0(∗), ∆2(∗), ∆4(∗)}
as given in Example 14. Fork < 4, the way to gener-
ate C∗

k is similar to that in theseparateplanning. Can-
didate 3-itemset{∆0(∗), ∆2(∗), ∆4(∗)} can be obtained
by joining two frequent 2-itemsets{∆0(∗), ∆2(∗)} and
{∆0(∗), ∆4(∗)}, which are thus included inC∗

2 . Accordingly,
to getC∗

2 , we need to first count and detect frequent 1-itemsets
{∆0(∗)}, {∆1(∗)}, {∆2(∗)} and{∆4(∗)}.

Compared to theseparatemining plan in Table 3, thejoin-
ingmining plan exhibits a much smaller search space in terms
of both candidate numbers and the minimal window that cov-
ersC∗

k at each iteration.Especially for the reductionofwindow
size (i.e., starting from each database transaction, each time
the number of transactions to look at), our previous experi-
ence indicates that the window size plays a dominant role on
inter-transactional association rule mining performance [32].

The other technique we use is calledspeedingwhich aims
at limiting the number of database scans in the presence of
long rules. We restrict1 ≤ k ≤ KLimit by performing a
series ofjoiningoperations instead of one. For instance, in or-
der to derive target candidate{∆0(∗), ∆1(∗), ∆2(∗), ∆3(∗),
∆3(∗)}, we can perform two join operations. First, let
U1 = V1 = {∆0(∗), ∆1(∗)}. Then, U1 U ′

1
⊕V ′

1
V1 =

{∆0(∗), ∆1(∗), ∆2(∗)} when U ′
1 = {∆1(∗)} and V ′

1 =
{∆0(∗)}. Second, letU2 be the result ofU1 U ′

1
⊕V ′

1
V1,

and letV2 = {∆0(∗), ∆1(∗), ∆1(∗)} obtained by joining
two {∆0(∗), ∆1(∗)} as theseparate planning does. Then,
U2 U ′

2
⊕V ′

2
V2 = {∆0(∗), ∆1(∗), ∆2(∗),∆3(∗), ∆3(∗)}when

U ′
2 = {∆2(∗)} andV ′

2 = {∆0(∗)}. Thus, after the3rd pass,
we can directly constructC∗

5 withoutL∗
4.

Here, theKLimit parameter can be set either beforehand,
or dynamically determined during the mining process. Basi-
cally, the number of frequent itemsets returned from previous
passes, the number of candidateRuleLen-itemsets derived
by joining the discoveredLis (i ≤ RuleLen), and the trade-
off between database scanning and extra candidate itemsets
counting, etc. are some factors which affect such a parameter
setting. We leave this issue to a further study.

The joining, convergingandspeedingtechniques lead us
to the joint mining plan. Figure 2 outlines such a plan con-
struction procedure. It has two steps. The first Initialization
Phase intends to find appropriate joining itemsets for each
template instanceti using the above three heuristics. That is,
it first selects an itemset fromCrossCommon which regis-

tersks-itemsets with common relative positions among more
than one template instance. If this fails, it selects an itemset
from SelfCommoni which registersks-itemsets with com-
mon relative positions withinti itself. If this fails again, then
a ks-itemset with the minimal window size inti is chosen
(line 5-8). The selected itemset, as well as its subsets used for
this itemset’s generation and pruning purpose, are stored in a
candidate pool (line 9-10). The second Sufficient-Candidate-
Pool-Checking Phase examines whether the itemsets in Can-
didatePool identified at Phase 1 can be successfully joined
for each template instance (line 12-13). If not, it continues to
look for joinable itemsets following the above three heuristics
(line 14) and stores the selected itemset and its subsets in the
candidate pool (line 15-16).

Taking the two template instances
t1 : ∆0(∗), ∆2(∗) ⇒ ∆4(∗), ∆6(∗) and
t2 : ∆0(∗), ∆1(∗) ⇒ ∆3(∗), ∆5(∗)
in Table 5 for example, letKLimit=3, ks=3, we have
CrossCommon = {∆0(∗), ∆2(∗), ∆4(∗)},
SelfCommon1 = {∆0(∗), ∆2(∗), ∆4(∗)}, and
SelfCommon2 = ∅. Figure 2 first selects a 3-itemset
{∆0(∗), ∆2(∗), ∆4(∗)} from CrossCommon for both t1
and t2, and puts it intoCandidatePool. All its low-level
subsets enterCandidatePool as well, making
CandidatePool = {{∆0(∗), ∆2(∗), ∆4(∗)}, {∆0(∗),
∆2(∗)}, {∆0(∗), ∆4(∗)}, {∆0(∗)}, {∆2(∗)}, {∆4(∗)}}.
Later in the Sufficient-Candidate-Pool-Checking Phase, the
algorithm checks to ascertain thatt1 can be derived by joining
two {∆0(∗), ∆2(∗), ∆4(∗)} in CandidatePool. In other
words,Join(t1, CandidatePool)  = Fail. However, with
all the itemsets inCandidatePool so far, no two itemsets
can be joined to derivet2, that is,
Join(t2, CandidatePool) = Fail. In this case, another
2-itemset{∆0(∗), ∆1(∗)} with the minimal window size
is selected fort2, enlargingCandidatePool with {∆0(∗),
∆1(∗)} and {∆1(∗)}, i.e., CandidatePool = {{∆0(∗),
∆2(∗), ∆4(∗)}, {∆0(∗), ∆2(∗)}, {∆0(∗), ∆4(∗)}, {∆0(∗),
∆1(∗)}, {∆0(∗)}, {∆2(∗)}, {∆4(∗)}, {∆1(∗)}}. As two
itemsets fromCandidatePool, i.e., {∆0(∗), ∆1(∗)} and
{∆0(∗), ∆2(∗), ∆4(∗)}, can be joined to generatet2 (Exam-
ple 14),Join(t2, CandidatePool)  = Fail. Themining plan
construction thus finishes, with the result shown in Table 5.

6 Frequent normalized extended itemset discovery phase

Based on the two different mining plans, we present two dif-
ferent frequent normalized extended itemset discovery algo-
rithms, namelyseparateand joint algorithms. Like Apriori
[4], both algorithms make multiple passes over the database.
Each pass consists of two phases. First, the set of candidate
itemsetsCk as indicated by the corresponding mining plan is
generated. The algorithms then scan the database. For each
minimal extended transaction set, they determine which can-
didates inCk are contained and increment their counts. At the
end of the pass,Ck is examined to check which of the can-
didates are actually frequent, yieldingLk. Considering that a
huge number of itemsets inC2 may be generated, especially
in the case of inter-transactional association rules, we adopt a
similar technique of hashing as [40] to filter out unnecessary
candidate 2-itemsets.
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Table 5.The joint mining plan: candidate itemsets to be counted

∆0(∗), ∆2(∗)⇒ ∆4(∗), ∆6(∗)
{∆0(∗)} {∆0(∗), ∆2(∗)} {∆0(∗), ∆2(∗), ∆4(∗)} {∆0(∗), ∆2(∗), ∆4(∗), ∆6(∗)}
{∆2(∗)} {∆0(∗), ∆4(∗)}
{∆4(∗)}

∆0(∗), ∆1(∗)⇒ ∆3(∗), ∆5(∗)
{∆0(∗)} {∆0(∗), ∆1(∗)} {∆0(∗), ∆2(∗), ∆4(∗)} {∆0(∗), ∆1(∗), ∆3(∗), ∆5(∗)}
{∆1(∗)} {∆0(∗), ∆2(∗)}
{∆2(∗)} {∆0(∗), ∆4(∗)}
{∆4(∗)}
C∗

1 C∗
2 C∗

3 C∗
4

|C∗
1 | = 4 |C∗

2 | = 3 |C∗
3 | = 1 |C∗

4 | = 2
W -Len(C∗

1 ) = 5 W -Len(C∗
2 ) = 5 W -Len(C∗

3 ) = 5 W -Len(C∗
4 ) = 7

Input: a set of template instances{t1, t2, . . . , tr}.
Output: a candidate pool containing candidate itemsetsC∗

k (k = 1, 2, . . . , ks, RuleLen).

Let SelfCommoni be the set ofks-itemsets with common relative positionswithin ti;
LetCrossCommon be the set ofks-itemsets with common relative positionsamongall tis.

Initialization Phase
1 CandidatePool = ∅;
2 if (RuleLen− 1 < KLimit) then
3 ks = RuleLen− 1
4 elseks = KLimit; // speeding to reduce the number of database scans
5 foreach template instanceti do
6 if Select(ti, ks, CrossCommon) = Fail then // select aks-itemset for the joining phase
7 if Select(ti, ks, SelfCommoni) = Fail then
8 get aks-itemset with the minimal window size fromti;
9 CandidatePool← the selectedks-itemset;
10 CandidatePool← all low-level subsets of the selectedks-itemset;
11 endfor

Sufficient-Candidate-Pool-Checking Phase
12 foreach template instanceti do
13 while Join(ti, CandidatePool) = Fail do
14 select anotherk-itemset forti (k < ks); // following step 6-8
15 CandidatePool← the selectedks-itemset;
16 CandidatePool← all low-level subsets of the selectedks-itemset;
17 endwhile
18 endfor Fig. 2.The joint plan generation procedure

6.1 The separate mining algorithm

Figure 6.1 gives theseparatemining procedure by extension
of Apriori.

Pass 1. The candidate setC1 is generated by attaching
each item inI with all possible contextual positions specified
in C∗

1 (line 1), i.e.,C1 = {{∆d(i)} | i ∈ I ∧ {∆d(∗)} ∈
C∗

1}. Then, starting from each extended transaction∆c(t),
the algorithm checks whether an itemi exists in the extended
transaction∆c+d(t′). If so, the count of candidate itemset
{∆d(i)} increases by one (line 3-5). In addition to counting
candidate 1-itemsets, the first pass also has the responsibility
of hashing all normalized 2-itemsets (e.g.,{∆0(i1), ∆d2(i2)}
where{∆0(∗), ∆d2(∗)} ∈ C∗

2 ), which are contained in the
current minimal extended transaction set, into a hash table

(line 6-8). After the first database scan, the frequent setL1 is
delivered (line 10).

Pass 2.A candidate 2-itemset{∆0(i1), ∆d2(i2)} is gen-
erated fromany two frequent 1-itemsets{∆0(i1)}, {∆d2(i2)}
in L1 (line 11), i.e.,C2 = {{∆0(i1), ∆d2(i2)} |
{∆0(∗), ∆d2(∗)} ∈ C∗

2 ∧ {∆0(i1)} ∈ L1 ∧ {∆d2(i2)} ∈
L1 ∧ (i1 < i2 ∨ d2 > 0) ∧ HashTable[func({∆0(i1),
∆d2(i2)})]/|TE | ≥ minsup}.

Note that all candidate itemsets should be normalized. For
candidate 2-itemsets, their hash values should not be less than
minsup ∗ |TE |. After generatingC2, the algorithm examines
every minimal extended transaction set in the database, say
{∆c(t), ∆c+d2(t

′)}, that may contain candidate 2-itemsets
like {∆0(i1), ∆d2(i2)}. If (i1 ∈ t) and(i2 ∈ t′), the count of
2-itemset{∆0(i1), ∆d2(i2)} will be added by one (line 12-
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Table 6.A sample realistic stock data, wherea represents IBM,b
represents IPG(International Public Group),c represents AES(The
AES Corp.),d represents AEE(American Corp.), ande represents
XEL(Excel Energy)

Extended trans. Date Stocks

∆(0)(t1) day1 IBM

∆(1)(t2) day2 IPG, AEE, XEL

∆(2)(t3) day3 IBM, AES, AEE, XEL

∆(3)(t4) day4 IBM

∆(4)(t5) day5 IBM, IPG, AES, AEE, XEL

∆(5)(t6) day6 IBM, AES, AEE

∆(6)(t7) day7 IBM, IPG, AEE

∆(7)(t8) day8 IPG, AES, AEE, XEL

∆(8)(t9) day9 IPG, AES, AEE, XEL

∆(9)(t10) day10 IBM

Table 7.Theseparateandjoint mining plans for∆0(∗), ∆1(∗) ⇒
∆2(∗)

∆0(∗), ∆1(∗)⇒ ∆2(∗)
separate{∆0(∗)} {∆0(∗), ∆1(∗)} {∆0(∗), ∆1(∗), ∆2(∗)}
mining {∆1(∗)} {∆0(∗), ∆2(∗)}
plan {∆2(∗)}
joint {∆0(∗)} {∆0(∗), ∆1(∗)} {∆0(∗), ∆1(∗), ∆2(∗)}
mining {∆1(∗)}
plan

C∗
1 C∗

2 C∗
3

14). The second scan of the database will deliver the frequent
setL2 (line 15).

Pass k (1 ≤ k ≤ RuleLen). Given Lk−1, the can-
didate generation functionE-Apriori-Gen(Lk−1) returns a
superset ofLk (line 17). The procedure has two parts.
In the join phase, two extended (k-1)-itemsetsX,X ′ ∈
Lk−1, which have the first (k-2) extended items in com-
mon, are joined to derive a candidatek-itemset. Let
X = {∆(d1)(x1), . . . , ∆(dk−2)(xk−2), ∆(dk−1)

(xk−1)}
and X ′ = {∆(d1)(x1), . . . , ∆(dk−2)(xk−2), ∆(dk)(xk)},
where (xk−1 < xk) or precedent(∆dk−1 , ∆dk

). We can
generate a candidatek-itemsetX ′′ = {∆(d1)(x1), . . . ,
∆(dk−2)(xk−2), ∆(dk−1)(xk−1), ∆(dk)(xk)}. It is obvious
thatX ′′ is also normalized due to Property 1 that any super-
set (X ′′) of a normalized itemset (X,X ′) is also a normal-
ized itemset. Allk-itemsets obtained in the join phase com-
prise a setCjoin

k . Next, in theprunephase, all those extended
k-itemset(s) inCjoin

k which have some (k-1)-subset(s) not
in Lk−1 are discarded, leading to the candidate setCk =
{X ′′ | (X ′′ ∈ Cjoin

k ) ∧ (∀Y ⊂ X ′′ (|Y | = k − 1) → (Y ∈
Lk−1))}.

The candidatek-itemsets are counted by making one pass
over the database in a similar fashion as countingC2 (line
18-20), from whichLk is derived (line 21). Such a candidate
generation and counting process terminates after some itera-
tion whenk > RuleLen orLk−1 = ∅.

In the following, we illustrate the steps of the separate
mining algorithm using a small realistic stock data shown in
Table 6. The database records 10 days’ rising movement of
five different stocks in March 2001 in USA, with time as the
dimensional attribute. Each transaction details stocks whose
prices are lower than the previous trading day. Assume the
template instance used is∆0(∗), ∆1(∗) ⇒ ∆2(∗). Table 7
gives the separate mining plan, i.e., candidate itemsets to be
counted. Let the support count threshold be 5.

Example 15According to theminingplan, theset of candidate
itemsets at pass1 isC∗

1 = {{∆0(∗)}, {∆1(∗)}, {∆2(∗)}}. By
scanning thedatabaseonce,weget 13 frequent 1-itemsetswith
count values:
count({∆0(IBM)}) = 7, count({∆0(IPG)}) = 5,
count({∆0(AES)}) = 5, count({∆0(AEE)}) = 7,
count({∆0(XEL)}) = 5; count({∆1(IBM)}) = 6,
count({∆1(IPG)}) = 5, count({∆1(AES)}) = 5,
count({∆1(AEE)}) = 7, count({∆1(XEL)}) = 5;
count({∆2(IBM)}) = 6, count({∆2(AES)}) = 5,
count({∆2(AEE)}) = 6.
From L1, candidate 2-itemsetsC∗

2 = {{∆0(∗), ∆1(∗)},
{∆0(∗), ∆2(∗)}} are generated, with 5 frequent itemsets re-
turned at pass 2, which are
count({∆0(IBM), ∆1(AEE)}) = 5,
count({∆0(AEE), ∆1(IBM)}) = 5,
count({∆0(AEE), ∆1(AEE)}) = 5,
count({∆0(IBM), ∆2(AES)}) = 5,
count({∆0(IBM), ∆2(AEE)}) = 6.
At pass 3, 2 candidate 3-itemsets,{∆0(IBM), ∆1(AEE),
∆2(AES)} and {∆0(IBM), ∆1(AEE), ∆2(AEE)}, are
derived from L2 according toC∗

3 = {{∆0(∗), ∆1(∗),
∆2(∗)}}. As the subset{∆0(AEE), ∆1(AES)} of the first
one is not frequent, we are only left with the second can-
didate. By scanning the database, we get its count value 5,
satisfying the count requirement. The separate mining al-
gorithm thus finishes with the resultL3 = {{∆0(IBM),
∆1(AEE), ∆2(AEE)}}. ✷

Correctness. The key to the correctness of the above
algorithm lies in the following lemma.

Lemma 1 Any frequentk-itemset inLk is included inCk, i.e.,
Lk ⊆ Ck.

Proof.We prove the lemma by induction.

1) Whenk = 1, L1 ⊆ C1 sinceC1 includes all possible
1-itemsets inC∗

1 that could be potentially frequent.
2) When k = 2, because the hash value
HashTable[func(x)] for any frequent 2-itemset
x = {∆0(i1), ∆d2(i2)} should not be less than
minsup ∗ |TE |, C2 gives all possible normalized 2-
itemsets inC∗

2 that could be potentially frequent, i.e.,
L2 ⊆ C2.

3) Assume the lemma holds whenk = n. Without loss of
generality, assumeX = {∆(d1)(i1), . . . , ∆(dn−1)(in−1),
∆(dn)(in), ∆(dn+1)(in+1)} is a frequent (n+1)-itemset
in Ln+1 (i.e., X ∈ Ln+1). Let Y, Y ′ ⊂ X,
whereY = {∆(d1)(i1), . . . , ∆(dn−1)(in−1), ∆(dn)(in)},
Y ′ = {∆(d1)(i1), . . . , ∆(dn−1)(in−1), ∆(dn+1)(in+1)}.
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Input: a set of candidate itemsetsC∗
k(k = 1, 2, . . . , RuleLen) identified by theseparatemining plan;

aminsup support threshold.
Output: a set of frequent itemsetsLk.

k=1
1 C1 = {{∆d(i)} | i ∈ I ∧ {∆d(∗)} ∈ C∗

1};
2 set all the buckets ofHashTable to 0;
3 foreachextended transaction∆c(t) ∈ TE do
4 foreachcandidatex = {∆d(i)} ∈ C1 do
5 if ∃∆c+d(t′) ∈ TE (i ∈ t′) then x.count++;
6 foreach i1 ∈ t (where∆c(t) ∈ TE) do // build hash table
7 foreach i2 ∈ t′′ (where∆c+d2(t

′′) ∈ TE) do
8 if {∆0(∗), ∆d2(∗)} ∈ C∗

2 then HashTable[func({∆0(i1), ∆d2(i2)})]++;
9 endfor
10 L1 = {x : {∆d(i)} | (x ∈ C1) ∧ (x.count/|TE | ≥ minsup)};

k=2
11 C2 = {x : {∆0(i1), ∆d2(i2)} | {∆0(∗), ∆d2(∗)} ∈ C∗

2 ∧ {∆0(i1)} ∈ L1 ∧ {∆d2(i2)} ∈ L1 ∧
(i1 < i2 ∨ d2 > 0) ∧ HashTable[func(x)]/|TE | ≥ minsup};

12 foreachextended transaction∆c(t) ∈ TE do
13 foreachcandidatex = {∆0(i1), ∆d2(i2)} ∈ C2 do
14 if (i1 ∈ t) ∧ ∃∆c+d2(t

′) ∈ TE (i2 ∈ t′) then x.count++;
15 L2 = {x : {∆0(i1), ∆d2(i2)} | (x ∈ C2) ∧ (x.count/|TE | ≥ minsup)};

3 ≤ k ≤ RuleLen
16 for (k = 3; (Lk−1 �= ∅) ∧ (k ≤ RuleLen); k + +) do
17 Ck=E-Apriori-Gen(Lk−1);
18 foreachextended transaction∆c(t) ∈ TE do
19 foreachnormalized candidatex = {∆d1(i1), . . . , ∆dk (ik)} ∈ Ck do
20 if ∃∆c+dj (t

′) ∈ TE (ij ∈ t′) (1 ≤ j ≤ k) then x.count++;
21 Lk = {x : {∆d1(i1), · · · , ∆dk (ik)} | (x ∈ Ck) ∧ (x.count/|TE | ≥ minsup)};
22 endfor Fig. 3.The separate mining algorithm

According to Property 2, any subset ofX should be in
Ln. Thus,Y, Y ′ ∈ Ln. In the join phase, the algorithm
joins Y andY ′ to getX ∈ Cjoin

n+1 . Thus, after the join
phase,Ln+1 ⊆ Cjoin

n+1 . By similar reasoning, the prune
step , where all itemsets whosen-subsets are not inLn are
deleted fromCjoin

n+1 , also does not discardX fromCjoin
n+1 ,

leavingX ∈ Cn+1. Therefore,Ln+1 ⊆ Cn+1.

Based on1), 2) and3), the lemma is proven. ✷

6.2 The joint mining algorithm

Thejoint algorithm (Fig. 4) is based on thejoint mining plan.
The differences between the two algorithms are two. First, the
candidate itemsetsC∗

k to be counted at each pass are different
due to the different mining plans. Second, thejoint algorithm
only counts itemsets tillk = ks, while in the final speeding
phase, it generates candidateRuleLen-itemsets by thejoin
operation defined in the previous section (line 1), and then
counts these candidates to obtain frequentRuleLen-itemsets
(lines 2–5).

To compare with the separate mining algorithm, in the
following example, we apply the joint mining algorithm to
the realistic data in Table 6.

Example 16According to the joint mining plan in Ta-
ble 7, the joint mining algorithm only countsC∗

1 =

{{∆0(∗)}, {∆1(∗)}} at pass 1 andC∗
2 = {{∆0(∗), ∆1(∗)}}

at pass 2. FromL2 ={{∆0(a), ∆1(d)}, {∆0(d), ∆1(a)},
{∆0(d), ∆1(d)}}, the algorithm performs two join op-
erations to derive 2 candidate itemsets at pass 3. That
is, {∆0(a), ∆1(d)}∆1(d) ⊕∆0(d) {∆0(d), ∆1(a)} ={∆0(a),
∆1(d), ∆2(a)}, and {∆0(a), ∆1(d)}∆1(d) ⊕∆0(d) {∆0(d),
∆1(d)} ={∆0(a), ∆1(d), ∆2(d)}. Since only the second can-
didate has a count value 5, which is not less than the specified
count threshold, the algorithm terminates with the frequent
3-itemset{∆0(a), ∆1(d), ∆2(d)} returned. ✷

Correctness.As the correctnessof Fig. 3 hasbeendemon-
strated, if we can show that the target frequentRuleLen-
itemsets being discovered by Fig. 4 is the same as those dis-
covered by Fig. 3, the correctness of Fig. 4 can be proved
accordingly.

Lemma 2 A target frequentRuleLen-itemset is discovered
by the joint mining algorithm if and only if it is discovered by
the separate mining algorithm.

Proof. It proceeds in two parts.
First, letX = {∆d1(x1), · · · , ∆dr−1(xr−1), ∆dr (xr)}

(r = RuleLen) be a target frequent itemset discovered by
the joint mining algorithm. With the downward closure prop-
erty (Property 2), any of its subsets (e.g.,
{∆d1(x1), · · ·,∆dr−2(xr−2),∆dr−1(xr−1)}, {∆d1(x1), · · · ,
∆dr−2(xr−2), ∆dr (xr)}, etc.) is also frequent. Thus, under
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Input: a set of candidate itemsetsC∗
k(k = 1, 2, . . . , ks, RuleLen) identified by thejoint mining plan;

aminsup support threshold.
Output: a set of frequent itemsetsLk.

1 ≤ k ≤ ks // Identical to theseparatealgorithm

k=RuleLen // the Speeding Phase
1 Ck = Join-Gen({L2, . . . , Lks});
2 foreachextended transaction∆c(t) ∈ TE do
3 foreachnormalized candidatex = {∆d1(i1), . . . , ∆dk (ik)} ∈ Ck do
4 if ∃∆c+dj (t

′) ∈ TE (ij ∈ t′) (1 ≤ j ≤ k) then x.count++;
5 Lk = {x : {∆d1(i1), · · · , ∆dk (ik)} | (x ∈ Ck) ∧ (x.count/|TE | ≥ minsup)};

Fig. 4.The joint mining algorithm

the separate plan, such a candidateX can also be generated
and counted using its candidate generation method.

Second, letX = {∆d1(x1), · · · , ∆dr−1(xr−1), ∆dr (xr)}
be a target frequent itemset discovered by the separate
mining algorithm. SinceX is the targetRuleLen-itemset,
which means that its contextual positions conform to the
template instance, without loss of generality, assume the
join operation carried out by the joint algorithm is between
two itemsets,UU ′ ⊕V ′ V, with ks= RuleLen-1, where
U = {∆d1(u1), . . . , ∆da

(ua),
∆da+1(ua+1), . . . , ∆db

(ub)} (1 ≤ a < b < RuleLen),
V = {∆da+1−d(ua+1), . . . , ∆db−d(ub), ∆db+1−d(ub+1),
. . . , ∆dur −d(ur)} (da+1 ≥ d, . . . , dur

≥ d),
U ′ = {∆da+1(ua+1), . . . , ∆db

(ub)}, V ′ =
{∆da+1−d(ua+1), . . . , ∆db−d(ub)}, and the joinable distance
is d.

As both algorithms share the same procedure of discover-
ing frequent itemsets beforek = RuleLen, to prove thatX
can also be detected by the joint mining algorithm, we only
need to show that there exist two frequent itemsetsU ∈ L|U |
andV ∈ L|V | (where1 < |U |, |V | ≤ RuleLen), on which
the above join operation can be performed to derive candidate
X at the final passk = RuleLen.

As X is frequent, any subset ofX is also frequent.
Thus, we can find two frequent subsetsX1 = {∆d1(x1),
. . . , ∆da(xa), ∆da+1(xa+1), . . . , ∆db

(xb)} in Lb andX2 =
{∆da+1(xa+1), . . . , ∆db

(xb), ∆db+1(xb+1), . . . , ∆dur
(xr)}

in Lr−a. Sinceda+1 ≥ d, . . . , dur ≥ d, by subtract-
ing d from each contextual position of items inX2, and
keeping the relative positions unchanged, the itemsetX ′

2 =
{∆da+1−d(xa+1), . . . , ∆db−d(xb), ∆db+1−d(xb+1), . . . ,
∆dur −d(xr)} remains frequent as well. Hereby, there exist
two frequent itemsetsU = X1, V = X ′

2, in respective
frequent setsLb andLr−a, from which candidateX can be
obtained and detected by the joint mining algorithm. ✷

7 Performance study

In this section, we report our performance study on the two
differentmining algorithms.As the aimof experimental evalu-
ation in this study is to assess and gain an overall feeling about
the fundamental performance of the two proposed methods,
our experiments here focus on their basic behavior’s investiga-
tion. Detailed comparison and analysis of specific heuristics

and various choices, introduced in the paper, are left in a fur-
ther study.

In the following, we first describe the methods used to
generate synthetic data and template instances. Section 7.3
presents some experimental results on synthetic data. Results
obtained from real data are described in Sect. 7.4.

7.1 Generation of synthetic data

The method used by this study to generate synthetic data is
similar to the one used in [4] with some modifications noted
below. Table 8 summarizes the parameters used and their set-
tings.

We first generate a setL of the potentially frequent ex-
tended itemsets which may span several transactions (e.g.,
{∆0(a), ∆1(b), ∆2(c)}), and then assign a frequent extended
itemset fromL to transactions. Items and their contextual po-
sitions in the first frequent itemset are chosen randomly, where
item is picked up from 1 toN , and its relative contextual posi-
tion is picked up from 0 toW . To model the phenomenon that
frequent itemsets often have commonextended items (i.e, item
ID plus contextual position), some fraction of extended items
in subsequent itemsets are chosen from the previous one gen-
erated. We use an exponentially distributed random variable
with mean equal to thecorrelation levelto decide this fraction
for each itemset. The remaining extended items are picked at
random.After generating all the extended items for a frequent
itemset, we normalize the generated itemset by subtracting its
minimal contextual point value from each contextual position
in this set.

After generating the setL of potentially frequent itemsets,
we thengenerate transactions in thedatabase.Each transaction
is assigned a series of potentially frequent itemsets. However,
upon the generation of one transaction, we need to consider
a list of consecutive ones starting from this transaction, as
items in a frequent extended itemset may span across different
transactions. For example, after selecting the frequent item-
set{∆0(a), ∆1(b), ∆2(c)} for current transaction∆c(t), we
should assign itema to t, itemb to its next transactiont′ which
is one unit away, i.e.,∆c+1(t′), and itemc to the transaction at
the point∆c+2. If the frequent itemset pickedonhanddoesnot
fit in the current or any one of its successive transactions, this
itemset is put in these transactions anyway in half the cases,
and the itemset enters anunfit queue for the next transaction
the rest of the cases. Each time, we pick itemsets from this
queue first according to the first-in-first-out principle. Only
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Table 8.Parameters

Parameter Meaning Setting

Data generation

|D| Number of transactions 20k - 100k

|T | Average size of the transactions 4 - 8

|MT | Maximum size of the transactions 8 - 12

|L| Number of potentially frequent itemsets 2000

|I| Average size of the potentially frequent itemsets 5 - 7

|MI| Maximum size of the potentially frequent itemsets 8 - 10

N Number of items 800 - 1600

W Window size 4 - 8

Template Generation

InstanceNum Number of template instances 3

RuleLen Length of rules 4, 5

SelfCommon Portion Portion of template instance with common relative 20%, 40%, 50%

contextual positionswithin itself

CrossCommon Portion Portion of template instances with common relative 20%, 40%, 50%

contextual positionsamong template instances

when the queue is empty, do we perform random selection
from the setL.

7.2 Generation of template instances

For generality, we generate various template instances using a
list of parameters shown inTable 8. Tomodel the phenomenon
that some common relative contextual positions may exist
within or among different template instances, we divide each
template instance into three parts, containingl1, l2, andl3 ex-
tended items, respectively (l1 + l2 + l3 = RuleLen). Part
I, whose contextual positions are directly selected from the
previous template instance except for±∆b difference, shows
the common relative positions among template instances, that
is, l1 = &CrossCommon Portion × RuleLen(. For the
first template instance, we generate this part randomly. Part
II, whose contextual positions are selected from within the
template instance’s Part I except for±∆b difference, shows
the common relative positions within a template instance, that
is, l2 = &SelfCommon Portion× l1(. Contextual points in
Part III are chosen randomly withl3 = RuleLen − l1 − l2.
Themaximumcontextual scopewithin each template instance
is bounded by the window sizeW .

For example, suppose the length of the two tem-
plate instances to be generated is 5 (i.e.,RuleLen=5,
InstanceNum=2), and the window sizeW=8. Let
CrossCommon Portion = 50% and
SelfCommon Portion = 30%, we have
l1 = &CrossCommon Portion × RuleLen( = &50% ×
5( = 3, l2 = &SelfCommon Portion×l1( = &30%×3( =
1, andl3 = RuleLen− l1 − l2 = 5− 3− 1 = 1. For the first
template instance, itsl1=3 contextual positions in Part I are
randomly picked up from[0,W ], so is thel3=1 contextual po-
sition in Part III. Assume Part I ={∆0, ∆2, ∆4} and Part III =
{∆5}.Thel2 = 1contextual position inPart II is selected from
Part I, except for±∆b difference determined randomly. Let
±∆b be+∆2 and the selected position from Part I is∆4, thus

Part II ={∆6}. As a result, the first template instance is com-
prised of contextual positions∆0, ∆2, ∆4, ∆5, ∆6. To gener-
ate the second template instance, its Part I, reflecting the com-
mon relative positions among template instances, is obtained
by selectingl1 = 3 contextual positions from the first tem-
plate instance. Assume the selected positions are∆2, ∆4, ∆5
and±∆b = −∆1 , Thus, Part I ={∆1, ∆3, ∆4}. Part II and
Part III of the second template instance are generated in the
same way as of the first template instance. Suppose Part II =
{∆4} and Part III ={∆7}. We have∆1, ∆3, ∆4, ∆4, ∆7 for
the second template instance, which is∆0, ∆2, ∆3, ∆3, ∆6
after normalization.

7.3 Experiments on synthetic data

Four sets of experiments were performed to investigate the
performance of theseparatealgorithm andjoint algorithm,
with the emphasis on their basic behavior, scale-up proper-
ties, and some key performance influential factors, including
contextual scope and template length. The machine used for
the experiments is a Sun Ultra SparcWorkstation with a CPU
clock rate of 164MHz and 64MB main memory.

7.3.1 Basic experiments

The first set of experiments studies the basic be-
havior of the algorithms when the minimum sup-
port changes. Three template instances of length 4
(InstanceNum=3, RuleLen=4) are generated based on
CrossCommon/SelfCommon Portion = 50%, denoting
the portion of template instances that have common relative
contextual positions among/within the template instances.The
speeding parameterKLimit is 3 through the whole experi-
ments.

As shown in Fig. 5, when the minimum support increases,
the execution times of both algorithms decrease because of
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Fig. 5. Minimum support
versus execution time

Table 9.Comparison ofseparateandjoint mining plans

separate |C∗
1 | = 7 |C∗

2 | = 7 |C∗
3 | = 9

mining plan W -Len(C∗
1 ) = 7 W -Len(C∗

2 ) = 7 W -Len(C∗
3 ) = 7

joint |C∗
1 | = 5 |C∗

2 | = 5 |C∗
3 | = 2

mining plan W -Len(C∗
1 ) = 6 W -Len(C∗

2 ) = 6 W -Len(C∗
3 ) = 6

the reduction in the number of candidateCk and frequent
itemsetsLk at each pass. Throughout the experiments,joint
is always superior overseparate. For example, in Fig. 5(b),
when minimum support is 0.25%, the mining time ofsepa-
rate is around 434s, while that ofjoint is 326s, about 33%
more time required. This is not surprising if we look at their
mining plans shown in Table 9. The template instances gen-
erated for this test are “∆0(∗), ∆0(∗) ⇒ ∆1(∗), ∆4(∗)”,
“∆0(∗), ∆1(∗) ⇒ ∆1(∗), ∆2(∗)”, and
“∆0(∗), ∆2(∗) ⇒ ∆5(∗), ∗∆6(∗)”. The joint algorithm gen-
erates its target candidates through

{∆0(∗), ∆0(∗), ∆1(∗)}(3) ⊕(1) {∆0(∗), ∆3(∗)} =

{∆0(∗), ∆0(∗), ∆1(∗), ∆4(∗)}
{∆0(∗), ∆2(∗), ∆5(∗)}(3) ⊕(1) {∆0(∗), ∆1(∗)} =

{∆0(∗), ∆2(∗), ∆5(∗), ∆6(∗)}
{∆0(∗), ∆1(∗)}(2) ⊕(1) {∆0(∗), ∆0(∗), ∆1(∗)} =

{∆0(∗), ∆1(∗), ∆1(∗), ∆2(∗)}
where for simplicity,i andj in U(i) ⊕(j) V denote the ith and
jth extended item inU andV , respectively.

From Table 9, we can see that at each pass, thejoint al-
gorithm counts less candidates which are of smaller contex-
tual scopes than theseparatealgorithm. As a result, lots of
time can be saved from searching the database. From this
preliminary experiments, we note that strategies aiming at
eliminating candidates, especially those with large contextual
scopes, can yield significant performance benefits in mining
inter-transactional associations.

7.3.2 Scale-up experiments

The second set of experiments is designed to study scale-up
properties of the algorithms.

Figure 6a shows howseparateand joint behave as the
number of items in a database increases from 800 to 1,600.As
expected, theexecution timesof bothalgorithms increase.This
is because more items lead to more candidates to be counted,
especially at the first two passes, resulting in more time for
searching the database before finding frequent itemsets.

In addition, when we increase the number of transac-
tions from 20K to 100K, both algorithms take longer time
to scan the database and count candidate itemsets. As shown
in Fig. 6(b), their execution times scale quite linearly.

Finally, we investigate the scale-up as we increase the av-
erage transaction size from 4 to 8. From the result presented in
Fig. 6(c), we observe that for both algorithms, the more items
per transaction, the more time needed to process. This is due
to several reasons. First, given a minimum support and a set
of items, when the average transaction size is large, there are
more frequent 1-itemsets generated, and hence more candi-
date 2-itemsets need to be counted. The construction of the
hash table forC2 at pass 1 also takes longer time. Moreover,
the time needed to scan every transaction of the database be-
comes longer, resulting in higher processing costs. For exam-
ple, at average transaction size 5, the execution times ofjoint
andseparateare 194s and 243s, respectively, but at average
transaction size 8, they increase to 338s and 435s, nearly 74%
and 79% increment each.

7.3.3 Further experiments

Our last experiment on synthetic database is to study the im-
pact of contextual scope (window size) and rule length on the
performance of mining algorithms. The experiment was con-
ducted under two different templates shown in Table 10. Each
template implies three template instances. The length and con-
textual scope of Template I are both 4, while the length and
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Fig. 6. Results of scale up experiments (InstanceNum=3, RuleLen=4,
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Table 10.Template instances for further experiment

Instance Template I (RuleLen=4, window size=4) Template II (RuleLen=5, window size=6)

No.1 ∆0(∗), ∆0(∗)⇒ ∆3(∗), ∆3(∗) ∆0(∗), ∆3(∗)⇒ ∆3(∗), ∆6(∗), ∆6(∗)
No.2 ∆0(∗), ∆3(∗)⇒ ∆3(∗), ∆4(∗) ∆0(∗), ∆0(∗)⇒ ∆0(∗), ∆2(∗), ∆2(∗)
No.3 ∆0(∗), ∆1(∗)⇒ ∆2(∗), ∆3(∗) ∆0(∗), ∆2(∗)⇒ ∆4(∗), ∆5(∗), ∆5(∗)
separate |C∗

1 | = 5, |C∗
2 | = 5, |C∗

3 | = 6 |C∗
1 | = 7, |C∗

2 | = 7, |C∗
3 | = 13, |C∗

4 | = 9
plan W -Len(C∗

1 ) = 5,W -Len(C∗
2 ) = 5 W -Len(C∗

1 ) = 7,W -Len(C∗
2 ) = 7

W -Len(C∗
3 ) = 5 W -Len(C∗

3 ) = 7,W -Len(C∗
4 ) = 7

joint |C∗
1 | = 4, |C∗

2 | = 4, |C∗
3 | = 2 |C∗

1 | = 3, |C∗
2 | = 3, |C∗

3 | = 2
plan W -Len(C∗

1 ) = 4,W -Len(C∗
2 ) = 4 W -Len(C∗

1 ) = 4,W -Len(C∗
2 ) = 4

W -Len(C∗
3 ) = 4 W -Len(C∗

3 ) = 4

contextual scope of Template II are 5 and 6, respectively. Fig-
ure 7 presents the result of the experiment.

Intuitively, the mining time under Template II should be
more than that under Template I, since the itemsets indicated
in Template II spanmore transactions and tend to be longer. In
fact, the results ofseparatealgorithm do justify such specula-
tion. Table 10 shows the candidate number and the maximal
contextual scopeof candidates tobecountedat eachpassunder
two templates. However, the behavior ofjoint is surprisingly
contrary. Looking at its search space, we find thatjoint ac-
tually counts less candidates each time byjoining necessary
itemsets, demonstrating the effectiveness ofjoiningoperation
andspeedingtechniques in the candidate identification and

generation steps. From this experiment, we note that careful
selection of a search space beforehand is quite important to
the inter-transactional association mining performance.

7.4 Experiments on real data

To test theapplicability of inter-transactional association rules,
we run the algorithms against two data sets collected fromSin-
gapore Stock Exchange (SSE). One is the WINNER set that
contains the stocks whose closing prices are 3% more than
the previous closing prices; and another is the LOSER set that
contains other stocks. For each data set, we have 250 records
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corresponding to 250 trading days in 1996 (i.e.,D=250). Al-
though there are a few hundred stocks in SSE, we only have
complete data for 84 stocks (i.e.,N=84). Observing that quite
a number of traders are likely to know recent stock behav-
ior based on the information in the past few days, we use the
template instance “∆0(∗), ∆1(∗) ⇒ ∆2(∗), ∆3(∗)” as our
mining guidance.

We like to test with these two data sets, because the major
trend for SSE in 1996 was down side, leading to a pretty large
average transaction size (more than 70) in the LOSER data
set, and a small average transaction size (less than 10) in the
WINNERdata set by contrast. Figures 8 and 9 show the exper-
imental results on these two different data sets. The support
threshold set for the LOSER data set is big enough (98%) as
each transaction (trading day) contains lots of items (dropping
stocks), while the support threshold set for theWINNER data
set is small (1.5%) due to the much less items (rising stocks)
per transaction (trading day).

Different from theseparatealgorithm which generates
candidate{∆0(∗), ∆1(∗), ∆2(∗), ∆3(∗)} through
{∆0(∗), ∆1(∗), ∆2(∗)}and{∆0(∗), ∆1(∗), ∆3(∗)}, joint al-
gorithm directlyjoins two {∆0(∗),∆1(∗),∆2(∗)}. Table 11
shows two different mining plans. Comparing Fig. 8 to Fig. 9,
the joint mining algorithm always spends less time than the
separate mining algorithm on Pass 1, 2, and 3. This is because
the former needs to count much less number of candidates
and the search space at each pass is smaller than the latter. At
the final pass 4, the separate algorithm takes less time as it
has pruned out some candidates fromC4. However, this is at
the cost of spending comparatively more time on the first few
passes in counting all possible subsets of 4-itemsets, leading
to a higher overall mining cost.

As the LOSER set has larger average transaction size than
the WINNER one, both algorithms need more time in mak-
ing hash table forC2, thus, their execution times at pass 1 are
longer. From the LOSER data set, one example rule that con-
forms to the template is “∆0(UOL), ∆1(SIA)⇒∆2(DBS),
∆3(OUT )”. It says that, if UOL goes down and SIA goes
down the following day, DBS and OUT will go down on
the second and third day with confidence more than 99%.
Here,UOL stock represents land market,SIA stock repre-

sents loansanddebentures, andbothDBS andOUT represent
banking market. This rule reveals the closely causal relation-
ships among four major stocks in Singapore. As known, the
land properties in Singapore play an important role in the na-
tional economic development, and therefore their decaying
inevitably leads to a bad performance of loans, debentures,
and banking. Such a discovered rule reveals some of the char-
acteristics of Singapore’s economic structures.

Since theWINNER data set is small, we do not have rules
with large support. However, we did find some interesting
rules such as
“∆0(HAISUNWT ),∆1(KIMENGWT ) ⇒
∆2(HAISUNWT ),∆3(HAISUNWT )”.
That is, ifHAISUNWarrant stockandKIMENGWarrant stock
(belonging to loans and bond sectors, respectively) go up on
successive days, HAISUNWarrant will keep going up for the
next 2 days.

Our study using stock movement data is on-going. The
results obtained so far indicate that, with inter-transactional
association rules, we can discover more comprehensive and
interesting knowledge, andjoint algorithm can achieve better
performance thanseparatealgorithm regardless of a large or
small average transaction size.

8 Related work

The presented multidimensional inter-transactional associa-
tion rules provide a more general view of association rule and
sequential pattern mining problems [34,35,16,7,8]. First, all
previous work treats data as a sequence of records in one di-
mension, and there are no discussions on a multidimensional
context. We believe that a large number of applications exist
where association is only meaningful when transaction/event
is viewed along more than one dimension simultaneously, for
example, in geographical applications. Second, even for one
dimensional data, there are differences between the previous
work and the one reported in this paper.

Traditional association rule mining. Theoriginal associ-
ation rulemining proposed byAgrawalet. al.[1] is apparently
a special case of the multi-dimensional inter-transactional as-
sociation rule mining: if we omit the dimensional attributes
in the transactions, and set the window size to one, the multi-
dimensional inter-transactional association rule mining will
degrade to intra-transactional association rule mining.

Sequential pattern discovery.Agrawalet. al.introduced
the problem of mining sequential patterns from transaction
databases where each record contains items bought by a par-
ticular customer, in different transactions during a period of
time [5]. One sequential pattern example is “80% of customers
bought shoesafter they bought shirts.” For mining sequential
patterns, transactionsof each customer orderedby transaction-
time are organized into one record. The problem of sequential
pattern mining was further generalized to allow items to be
present in a set of transactions whose transaction-times are
within a user-specified time window [49], Despite this, se-
quential pattern mining focuses onsuccessive/precedentre-
lationships of items. On the other hand, we are interested in
finding all associations across a set of transactions within all
possiblydifferent ranges. This part of contextual informa-
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Table 11.Template instances for the experiments on real-data

Template instance:∆0(∗), ∆1(∗)⇒ ∆2(∗), ∆3(∗)
separate {∆0(∗)} {∆0(∗), ∆1(∗)} {∆0(∗), ∆1(∗), ∆2(∗)} {∆0(∗), ∆1(∗), ∆2(∗), ∆3(∗)}
plan {∆1(∗)} {∆0(∗), ∆2(∗)} {∆0(∗), ∆1(∗), ∆3(∗)}

{∆2(∗)} {∆0(∗), ∆3(∗)}
{∆3(∗)}
|C∗

1 | = 4 |C∗
2 | = 3 |C∗

3 | = 2 |C∗
4 | = 1

W -Len(C∗
1 ) = 4 W -Len(C∗

2 ) = 4 W -Len(C∗
3 ) = 4 W -Len(C∗

4 ) = 4
joint {∆0(∗)} {∆0(∗), ∆1(∗)} {∆0(∗), ∆1(∗), ∆2(∗)} {∆0(∗), ∆1(∗), ∆2(∗), ∆3(∗)}
plan {∆1(∗)} {∆0(∗), ∆2(∗)}

{∆2(∗)}
|C∗

1 | = 3 |C∗
2 | = 2 |C∗

3 | = 1 |C∗
4 | = 1

W -Len(C∗
1 ) = 3 W -Len(C∗

2 ) = 3 W -Len(C∗
3 ) = 3 W -Len(C∗

4 ) = 4

tion can be explicitly captured within the inter-transactional
association rule framework.

Episode rule discovery. In episode rules presented by
Mannila et al. [34,35], the temporal relationship among events
is expressed roughly as “if episodeP has a minimal occur-
rence at interval[t, t′] with t′ − t ≤ V , then episodeQ occurs
at interval[t, t′′] for somet′′ such thatt′′−t ≤W ”, where the
time bounds involved are constrained to have the same start-
ing timet. As mentioned by the authors, only certain types of
episodeswith predefinedpredicatesand timeboundsareeasily
detected using their mining algorithms. The efficient mining

of more general episode rules with arbitrary time bounds from
a large sequence remains an open problem.

Rule discovery from time-series data. Das et al. pro-
posed adaptive methods for finding rules from the pre-
processed data [16]. First, a time series is converted into a
discrete representation. Based on the discretized sequence,
temporal patterns can be detected using previous rule-finding
algorithms (such as the episode rule methods). Although this
work need not define beforehand what patterns to be used, the
rules they studied are rather simple and limited to the form
of “ if A occurs, then B occurs within time T”.Although the
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authors mentioned that the rules can be extended to a more
complex form, likeA1 ∧ . . .∧Ah [V ] ⇒ B [W ], statingif A1
and . . . andAh occur withinV units of time, thenB occurs
within timeW , the rules are still limited to two windows only.

Temporal relationship mining. Compared to
episode sequences and Das et al.’s rules, Bettini et al. looked
formore complex event sequences from time-series data, even
using different timegranularities [7,8]. However, their focus is
on event sequences. Neither definitions normining algorithms
regarding the rules were discussed in the context. It is obvious
that rules above certain confidence threshold can show the
connectionsbetweeneventsmore clearly thanevent sequences
alone [35].

Time-series analysis.Time-series analysis and forecast-
ing has been an active research topic in statistics. The main
purpose is to understand and model the stochastic mechanism
that gives rise to an observed series, or to forecast future val-
ues of a series based on the history of that series [56,14].
DeCoste proposed a technique based on linear regression and
neural network for automatic detection of anomalies in sensor
data [17]. Recently, Yiet. al presented a fast method called
MUSCLES to analyze co-evolving time sequences to enable
estimation of missing/delayed/future values and outlier detec-
tion [58]. The main theme of the analysis performed in this
area is different frommining rules from a large amount of data
under multidimensional contexts.

Similarity retrieval from sequences. Most of sequence-
related work in the database community concerns similarity
search and querying, i.e., finding similar sequences that match
a given pattern in some error distances, or searching all pairs
of similar sequences [2,30,15,54]. Various approaches have
been suggested including using the discrete Fourier transform,
interpolation approximation, or defining some shape querying
languages [29,?]. Issues such as how to detect patterns effi-
ciently from a huge database of sequences are not the focus in
this body of work.

We believe that discovering inter-transactional association
rules would reveal more comprehensive and useful informa-
tion which in turn can be used in broad applications for anal-
ysis, prediction, and decision making.

9 Conclusion

Mining inter-transactional association rules is a computation-
ally intensive problem, requiring much more search effort
compared to the traditional association rule mining. In or-
der to make such association rules truly practical and ex-
tensible, in this study, we propose a template model to help
users specify the interesting rules to be mined. Several opti-
mization techniques are devised to speed up the discovery of
inter-transactional association rules. Our performance study
on both synthetic and real-life data sets reveal that with inter-
transactional association rules, we can discover more compre-
hensive knowledge; and careful selection of mining plans to
reduce the search space is critical to the performance of such
extended association rule mining.

We plan to extend this work in several directions. Besides
context constraints, we will also consider pushing item con-
straints into the inter-transactional associationminingprocess.

Development of efficient discovery algorithms for 2- andm-
dimensional inter-transactional association rules is another fu-
ture work we are working towards. It might also be interesting
to study the multidimensional inter-transactional association
rule mining in distributed and parallel environments.
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