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Abstract. Multidimensional inter-transactional association association rule mining query languages [36,52], constraint-
rules extend the traditional association rules to describe morbased rule mining [27,38,50,52,6,24,18], incremental main-
general associations among items with multiple propertiesenance of discovered association rules [11], parallel and dis-
across transactionsAfter McDonald and Burger King open tributed mining [3,22,12], mining correlations and causal
branches, KFC will open a branch two months later and structures [9,46,47], cyclic, interesting, and surprising asso-
one mile awayis an example of such rules. Since the num- ciation rule mining [39,43,13,10], mining frequent itemsets
ber of potential inter-transactional association rules tends tavith multiple supports [31,55], and so on.
be extremely large, mining inter-transactional associations Recently, the problem of miningultidimensional inter-
poses more challenges on efficient processing than miningransactional association rulesas introduced in [33,32].
traditional intra-transactional associations. In order to makdt extends the scope of mining association rules from tra-
such association rule mining truly practical and computa-ditional single-dimensional intra-transactionalssociations,
tionally tractable, in this study we present a template modeto multidimensional inter-transactionahssociations. Intra-
to help users declare the interestimgltidimensional inter-  transactional associations are the associations among items
transactional association® be mined. With the guidance of within the same transactionwhere the notion of the trans-
templates, several optimization techniques, i.e., joining, conaction could be the items bought by tekeme customethe
verging, and speeding, are devised to speed up the discovegvents happening on treame dayetc. However, an inter-
of inter-transactional association rules. We show, through dransactional association describes the association relation-
series of experiments on both synthetic and real-life data setships amonglifferent transactionssuch as if company A’'s
that these optimization techniques can yield significant perstock goes up on day 1, B’s stock will go down on day 2, but
formance benefits. go up on day 4.In this case, whether we treat company or
day as the unit of transaction, the associated items belong to
different transactions. Moreover, such an inter-transactional
association can be extended to associate multiple contextual
properties (e.g., time, space, temperature, etc.) in the same
rule, so that multidimensional inter-transactional associations
can be defined and discovered. For example, if a database
contains records about the time and location of buildings and
facilities of cities under development, we may be able to find 2-
1 Introduction dimensional inter-transactional association rules sucti\&s “
ter McDonald and Burger King open branches, KFC will open
branch two months later and one mile awayhich involves
wo dimensions timeandspace
Multidimensional inter-transactional association rules
26,45,40-42,51,59,19], mining generalized, multi-level, orProvide a more detailed view of associations among items
quantitative association rules [48,49,23,21,20,37, 28,25, 44€cause they intend to capture more rich contextual informa-
ion for association relationships. In comparison, the context
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ence, University of Twente, P.O. Box 217, 7500 AE Enschede, ~ t0 single transaction. Thus, from both a conceptual and al-
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Since the problem of mining association rules was introduce
in [1], a large amount of work has been done in various di-
rections, including efficient, Apriori-like mining methods [4,
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ciation rules can be viewed as a simple case of multidimenTable 1.A sample database
sional inter-transactional association rules. By extension of

Apriori [4], two kinds of algorithms, named E/EH-Apriori x_y [ltems
(Extended/Extended Hash-based Apriori) [33,32] and FITI®t 0 0 {ab.g
(First-Intra-Then-Inter) [53], were presented for mininginter-t= 1 0 {b}
transactional association rules from large data sets. Empiricak 2 0 {b,¢}
results indicate that with multidimensional inter-transactional;, 3 o {d}
association rules, more comprehensive and interesting knowk—5 4 0 f{bc}
edge can be detected, but this is at the expense of higher com- 0 1 {bg
putational cost than traditional association rule mining. 6 '
In order to make inter-transactional association rule min-t7 1 1 {d}
ing truly practical and computationally tractable, in this studyts 2 1 {a}
we propose a template model to help such rule discoveryto 3 1 {b}
Previous work on traditional association rules demonstrated,, 4 1 {a}
the effectiveness of constraint/query-based associationmining, o 2 {a}
[27,38,50,52,36,6,18]. It is applicable to inter—transactionall512 1 2 {b
association mining as well, since users may also have certaip 5 2 b
interesting inter-transactional contexts in mind, from which ** {b, c}
to do the mining. For example, users may want to know how/ts 3 2 {b}
stocka’s rising behaviotodayaffects other stocksextweek ~ tis 4 2 {b}
Arule like “If a goes dowrwillgodown 243 days latémost  tis 0 3 {b,c}
probably cannot inspire much confidence in stock traders. ¢, 1 3 {d}
Hence, one contribution of this paper is to provide users;,, 2 3 {a}
with a set of constructors to specify the interestintgr- 3 3 {bo
transactional associationsso that mining can be focused 4 3 {a

and the cost incurred is proportionate to what the users want®
and get. Another contribution of the paper is that we develop
several optimization techniques, i.@ining, convergingand
speedingfor mining inter-transactional association rules un- items within a transaction. That is, we only consider the items
der rule templates. This allows us to significantly reduce thehemselves and ignore other attributes associated with such
amount of wasted work performed during the mining processtransactions, such as time, place, and customers. However, it
We demonstrate the effectiveness of these techniques througboften the case that, such attributes, or contextual information
a series of experiments on both synthetic and real-life dataf transactions, are of main interests. In Table 1, we show a
sets. sample database about fast food outlets. Each record contains
The remainder of the paper is organized as follows. Ina list of items,a, b, ¢, andd representing different types of
Sect. 2, we provide a brief review of the basic concepts of mul-outlets, such as MacDonald, KFC, Burger King, together with
tidimensional inter-transactional association rules. A templateheir locations in terms aof andy coordinates, which can be
model for such extended multidimensional inter-transactionaliewed as the number of blocks from a reference point. The
association rules is then introduced in Sect. 3. Section 4 exgraphical representation of the database is shown in Fig. 1.
amines the template translation phase in detail. Several optiFor such a database, we may not only be interested in which
mization techniques and algorithms which utilize templates tooutlets are in the same block, but also the outlets in neighbor-
speed up the discovery of inter-transactional association rulesg blocks, which requires us to consider associations among
are discussed in Sects. 5 and 6. The experimental evaluatidtems from different transactions. With such a motivation, we
on both synthetic and real-life data sets is presented in Sect. éxtended the traditional intra-transactional association min-
Section 8 reviews some closely related work. Finally, Sect. 9ng to inter-transactional, multidimensional association min-
concludes the paper with a brief discussion of future work. ing [33,32].
In multidimensional association mining, a transaction (in

o . i . a generic sense) contains two pieces of information, a list of
2 Association among multidimensional transactions items and the context under which the items are considered.
Items in a transactional database could be of any type of ob-

In this section, we provide some background information.ects or events that are of interest to a particular application
for multidimensional inter-transactional association rules. We ’ P PP ’

start with a database of multidimensional transactions, an&UCh as shopping items, shops, gas stations, restaurants, best

then define multidimensional inter-transactional associatior%e"ers’ etc. The context IS usually defined 7_byattr|_butes, .
rules. di,ds,. .., d,,each of which represents a dimension. Typi-

cal dimensional attributes inclutiene, distance, temperature,
latitude, and so on. Note that the dimensional attributes could
2.1 Database of multidimensional transactions be of any kind of attributes related to an application. In our
above sample database, we have two numerical dimensional
In the traditional association mining, the database to be minedttributes x andy, representing the number of blocks in two
is organized as a set of records identified by their transacelirections with respect to a certain reference point. The con-
tion IDs. Associations mined refer to the relationships amongext for a stock movement database could be constructed by
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y whered; € D;,;1 < i < mandl € Z. To emphasize that
(d1, do, ..., dp) is the context under which the transac-
. . tion occurs, we call it theontextual poinbf the transaction,
8 g } o |mb | o denoted ag\ 4, | 4, ..., 4,,), @nd call such a multidimensional

u transaction aextended transaction and denote it as
t11 al [t12 113 t14 t15

116 t17 t18 t19 t20

Ay, ds, ..., d,,)(t). Similarly, we can describe the occurrence

u’ S\ m® u contextofaniteni € Z by associating am-dimensional con-

= = s — textual pointA 4,  4,, ..., a,,) Withi. We call such kind of item

\OJ a an extended itemand denote it agd 4, 4,, ..., 4,,)(¢). Us-
3 - ; . ™ ; ,
ing the notation, the multidimensional transactional database
shown in Table 1 can be transformed into the database shown

. ) | % in Table 2.

p| H b . m’ Note that the contextual point of an extended trans-

action or an item, is just a point position in the-

dimensional space. Let; = (n;.dy, n;.ds, -+, n;.dpy)

Fig. 1.A graphical representation of the sample database and n; = (n;.di, nj.de, ---, n;.dp) be two such
points, whose values on the dimensions are represented
aSn,;.dl, Tli.dg, ey ;. A, aﬁdnj.dl7 7'Lj.d27 ey nj.dm,

one dimensional attributesading date As another example, respectively. Two points,; andn; are equal, if and only if

adatabase of best sellers of a chain store, the items arethe b&8t(1 < k& < m) (n;.dy = n;.dy). A relative distance
selling products, and the dimensional attributes could be théetweenn,; and n; is defined asA(n;,n;) = (n;.dy —
date, or the branch of the store. The diversity of dimensionah;.di, n;.ds — n;.ds, -- -, nj.dm — n;.dy,). Thus, besides
attributes raises two issues. First, for continuous attributesthe absolute representatiofn;.d,, n;.d2, ---, n;.d,,) for
items may be associated with different attribute values. Fopoint n;, we can also represent it by indicating itsla-

example, the stock price may be different every time unit. Intive distanceA(ng, n;) from a certainreference point n,.

this case, a continuous attribute needs to be discretized intoi-et N' = {n1, n2, ..., n,} be a set of points in an

tervals based on the requirement of applications. For examplep-dimensional space. Thiargest reference point of A/

we can choose a trading day as one interval, a transactionis the pointny, where Vk (1 < k& < m) (nodp =

(]
o

|
NG
(]

o

1 2 3 4 X

item list contains all stocks whose prices are up during themin(n;.dy, na.dg, ..., ny.dy)).
day. We can also choose one week as an interval when we are _ i
concerned more over long term trend. In this case, the item lisEx@mple 1Given two points,n; = (0,2),n2 = (1,1),

contains stocks whose prices are up with respect to the closing a two-dimensional space, the largest reference point of
prices of last trading day of the week. Second, since we intend”1: 72} 1870 = (0, 1), sinceng.dy = min(n,.di, ng.di) =
to mine inter-transactional associations, transactions have 8720, 1) = 0andng.dy = min(ny.ds, n9.dz) = min(2, 1
be ordered. For example, we may have an association rule sa?—l-
ing that “ltem A, a best seller at stor&, will be a best seller
at the next store within two-day’s tini@hat is, A will appear In the following, we also refer to am-dimensional point
in the next transaction in the order of attributesp. While or-  n; throughA ., o\ —ng a1, ni.as—ng.as, ..., ns.am—no.am) WHEN
dering of continuous attributes is easy to determine, orderinghe reference poini is clear in the context of discourse.
nominal attributes seems unnatural from mathematical view Given an extended item set, = {Awq, .. .4,..) (1),
point. However, it can be done if we consider the semanticsA g, , ... 4, ,.)(i2), - - s A(dy 1.....dy.) (i) }, We call it anor-
of the attributes and applications. In our best seller examplemalized extended item setif the reference point of the ex-
transactions can either be ordered by the size of shops, or géended items inl,. is the largest reference point of the set,
ographical distances between shops. Similarly, the domain athat is, Vj(1 < j < k) Vi(1 < i < m) (min(d;,;) = 0).
attributecustomercan be ordered based ageor incomeof Similarly, we call an extended transaction set@malized
customers. Although rules mined with different ordering may extended transaction setif all extended item sets of those
have different forms, users can prepare the data in such a wayansactions are normalized extended item sets.
that the results will be of most interest to them. Besides, we  Any non-normalized extended item (transaction) set can
may not need to have a total order for each dimension. If thébe transformed into a normalized one throughoamaliza-
relative distance between every two transactions can be iderion function called Norm, whose intention is to reposition
tified (neighbor), that is ok. Note that distance is weaker tharall the involved extended items (transactions) based on the
a total order. largest reference point of this set. We Wseg and Ty to

With the above understanding, we assume that the dodenote the set of all possible normalized extended item sets
main of each dimensional attribute is divided into intervals,and normalized extended transaction sets, respectively.
and transactions are ordered before mining association rules. The motivation of having normalized extended item sets
A database of multidimensional transactions can be definedan be clearly seen using two such item sets circled in
as follows. LetZ = {ii,is,...,4,} denote a set of liter- Fig. 1. I. = {A 0 (a), Aw,1)(c), Au,1)(d)} andI] =
als called items, an® = {D1, Ds,..., D,,} denote a set {A 2 (a), Awn3)(c), An,s3)(d)}. I is normalized, and;
of dimensional attributes. A multidimensional transactionalis not: the minimum value for both andy for all items in/,
database is a set of transactiohs= {t,ts,---,t,}, where is zero and the minimurg for I is 2. The normalized item
each transaction iff is in the form of(dy, da, ..., dpm, I) setforll is I] = {A,0)(a), Aw,1)(c), Au,1y(d)}, which

~—

O
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Table 2.A transformed extended transactional database

Transaction (x, Y, ) Extended transaction Extended Iltems

t1 (0, 0,{8, b, (}) A<070) (tl) A(O,O) (a), A(O’(]) (b), A((],o)(c)
t2 (1,0.{b}) Ao (t2) A1,0)(b)

ts (2,0,{b,c})  Ap(ts) Az2,0)(b); Agz,0)(c)
ta (3, 0,{d }) A(g’o) (t4) A(gy[)) (d)

ts 4, 0,{b, C}) A(470) (ts) A(4,0)(b), A(470)(C)
te (0,1.{b,c})  Ap(te) A,1)(b), Aw,1)(c)
tr (l, 1,{d}) A(l)l)(tﬂ A(lyl)(d)

ts 2, 1,{a}) A(gyl)(tg) A(g,l)(a)

to (3, 1,{b}) Az (be) As1)(b)

t1o (4,1,{a}) Aa,1)(t10) Ay (a)

ti1 0, 2,{a}) Ag,2)(t11) Ag,2)(a)

12 (1,2,{b}) A1,y (t12) A2y (D)

t13 (2,24b,c})  Apaz(ts) Az2)(b); Arz,2)(c)
t1a (3, 2,{b}) A(g’g) (t14) A(gyg) (b)

t1s (4,2,{b}) Ag,2)(t15) Aa,2)(b)

tie (0, 3,{b, C}) A(ng) (t16) A(O’g)(b), A(()’g)(c)
ti7 1, 3,{d}) Ag,3y(t17) A,3)(d)

t1s 2, 3,{8}) A(ng)(t18) A(g,g)(a)

tio @.3.{b,c})  Aps(t) A3,3)(), Ags,3)(0)
t20 (4, 3,{a}) Aa,3y(t20) Aa,3)(a)

is actually the same ds. That is, normalized itemset makes it the support of a ruleéX = Y is the fraction of transactions
possible to find the same pattern in a multidimensional spacehat containsX UY over the whole transactions, and the con-

) ) fidence of the rule is the fraction of transactions containing
Property 1Any superset of a normalized extended item 4t 550 contairt”. However, to measure multidimensional
(transaction) set is also a normalized extended item (transpter-transactional association rules, which may span different
action) set. U transactions, the traditional support concept must be extended
accordingly from the originadingle-transaction-basetb
transaction-set-based

We first extend the concept of a transaction containing a

set of items.

This property can be proven easily from the definition of
normalized extended item (transaction) set.

2.2 Multidimensional inter-transactional association rules Minimal containment relationship between an ex-

. ) ) tended transaction set and a normalized extended item
From the multidimensional transaction database deset. We define thatl, contains I, if and only if

fined above, we can now define multidimensional inter-

transactional association rules. (@) Forva, ., d, o, ..., do.m)(iz) € Ine, there exists an ex-
tended transaction 4, , 4, ., ... d,..)(t) €

Definition 1 A multidimensional inter-transactional asso- Norm(T,), where ¢, € t), and

ciation rule is an implication of the formX' = Y, where  (b) there exists no other extended transactiofiégguch that

X,YCIE7XUYCINE,andeY:® Oa Te/CTe and (a) holds

Different from classical intra-transactional association xample 2Refer to our sample transaction database in
rules, an inter-transactional association rule provides the ocgig. 1 and Table 2. Gived,. = (A0 (@), A (o),

currence context for associated items by means of a normaln | 1(d)}, two extended transaction sets contaip,.

ized extended item sef U Y. That is, all items in an asso- The’y areTy = {Ag)(t1), Ao (ts), Aq(tr)} and
ciation rule use the same reference point. For example, arulg, — {Ap2)(tn), A(o 3 (t16), ’A(l 3) (t17)}’- After nor-

that predicts the stock price movemenifstock ‘a’increases  malization, both of them have transéctionsé% 0y A0.1)

one day, and stock’increases the following day, then most gpq Ay with items a, ¢, and d, respeciively. For
probably stocke’will increase on the fourth daycanbe ex-  the same reason, we have three extended transaction sets
pressed by an one-dimensional inter-transactional associatiqR the database, i.64A0.0) (1), Ao.1)(te) } {A0.2)(t11),

rule “A)(a), Auy(c) = Ag(e)’, where 0,1, and3are A 4 (t15)} and {A.1)(ts), A2 (tiz)} that contain

ne

days_frc_)m any trading date_. o = {Ap.0)(a), Apye)}. 0O
Similar tointra-transactional association rules, wesige
port andconfidenceas two major measurements for multidi- Now we define support and confidence of a multidimen-

mensional inter-transactional association rules. Traditionallysional inter-transactional association rule.
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Definition 2 Given a multidimensional transaction example. The database has one dimensional attribute, trading
database withV extended transactions, tkepport andcon- day and lists of stocks whose prices are up on the trading day.
fidenceof a multidimensional inter-transactional association An investor may be interested to knoviwWhen two stocks
rule X = Y is defined assupport(X = Y) = |T,,|/N| rise together on the same day, which stock will go up one
and confidence(X = Y) = |T,y|/|T.|, where|T,,| and  week later?" This is equivalent to association rules in the
|T..| are the number of extended transaction sets that contairiorm of A (), A(0)(*) = A7) (*), where * represents any
X UY and X, respectively, in the database. o stock. Using this rule as the template, the mining algorithm
can reduce the search space dramatically. For example, it only
needs to examine transactions that are 7 days apart. More im-
portantly, the user will be only given those rules that s/he is
interested in. While using rules in some particular form as a
template can serve the purpose, there are some related issues.
For example, if a user would like to knoWwWhen two stocks
transaction sets that contalfy only 2 of them contaitk UY". rise t‘,’gerher on the same dgy, which stock will go up W‘th"? a
Thus,con fidence = |Tyy|/|Ts| = 2/3 ~ 67%. O week?”, s/he may need to give a set of such template rules like
Y
- - Ay (%), A(0) () = Ay (x), A() (%), A(0)(¥) = Agz) (),
Although we extended the traditional association rules toand etc. Obviously, it is rather ineffective to do so.
a multidimensional context, the property of Apriori based as-  With the above observation, we propose a two-level tem-

Example 3Suppose we have an inter-transactional associ
ation rule “Aqgy(a), Awp)(c) = Aqn2(d)” from the
database in Fig. 1, witl\ = {A,0)(a), A¢,1)(c)} and

Y = {Aq,1)(d)}. According to Example 2, the total num-
ber of extended transaction sets that conf&inY is 2. Thus,
support =|T,,|/N = 2/20 = 10%. Among the 3 extended

sociation rule mining algorithm still holds: plate model for association mining in multidimensional trans-
Property 2 Given two normalized extended itemsefsand ~ actional databases. Users specify high-léseiplate expres-
X' whereX ¢ X', support(X) > support(X'). O sions and the system transforms them irtemplate in-

stancesLetP,;,; be the set of all possible contextual points

Proof.LetTx andTx- denote a set of extended transaction setdn the transactional database in consideration. We call an ex-
that containX andX’, respectively. Itis obvious th#l'x| > tended item with uncertain contextual point and/or item an

|T'x|, since for any extended transactionigetontainingX’,  extended item variable denoted a¥ (z), whereV € P,

we can find a corresponding minimal extended transaction se@andz € Z. A multidimensional inter-transactional asso-

t, C t,» containingX. ciation rule template expressionconsists of a set of ex-

Therefore, we have tended item variables that satisfy indicated constraints in the
support(X) = ‘T—J\);' > % = support(X'). O form of Vi (z1), Va(z2), ..., vp(zp) = vp+1(xp+1)7

As the databases to be mined usually contain a huge: > Vo+a(Zp+q) | (Citem: Ceontert), WhereVy (z1), Va(x2),
amount of data with the fast growing data collection technolo-- - - » Vp+q(Zp+¢) are extended item variabley.., is a con-
gies, Property 2 not only enables simplifying the computationStraint Boolean expression on items, x5, ..., 2,44, and
of the support level of extended itemsets, but also maintain§contezt IS @ constraint Boolean expression on item contexts
the important monotonic property that the support of an item-V1, Vz, - - -, V4. All contextual pointsv;(s) in a rule tem-
set will not be larger than the support of any of its subsets Plate should be positioned with respect to acommon reference
We like to have this downward closure property since it isPOInt. The above rule template implies that only association
the base of a large set of efficient association rule mining alfules satisfying botl;¢cr, andCeontert are to be detected.
gorithms. All existing algorithms that mine multidimensional

inter-transactional association rules use this property [33,32Example 4“V; (z1), Va(z2) =

53] VS (I3) | (Citemaccontemt)”i where Citem : true
and Ceontext - (V1 = V, = A(O)) AN (0 <
DistPoint(1,V2,V3) < 7) is a template expression,

3 A template model with three variablesDist Point is a function which returns

for inter-transactional association rules the distance between two contextual points along a certain

specified dimension (dimension 1 in this example). This

A frequently encountered problem in association rule min-miate expression specifies all the association rules with
ing is that mining systems may return quite a large numbet,

I X A ; wo items in the antecedent and one item in the consequent.
of rules. With inter-transactional associations which captureryq contextual point of the two antecedent items are the same

m(I)re kntowleggte tr&antmga—transactlona_ll_r(])nesf, the r;kl:mt{[er nd the consequent item’s is seven unit apart. In the context of
rules returned tends to be even more. Thus, from the stanGs,, stock movement example, those association rules answer

points of both users and computational costs, it is necessary, query “When two stocks rise together on the same day.
to restrict the search space and perform human-centered daj@ich stock will go up within a week?”. 0 '

mining. In this section, we present a template model to enable
users to specify what kinds of interestingultidimensional

; ; L . Rule template instances are instantiation of corresponding
inter-transactional association rulese to be mined.

rule template expressions, where extended item variables are
instantiated to actual contextual points.
3.1 A two-level template model

Example 5% Ay (x), Ay () = Ay (¥)", * Aoy (),
Templates are effective ways for users to specify the kind ofA ) (x) = A (*)", -+, “Aoy(*), D) (*) = Ar)(*)”
associations they want to mine from a multidimensional trans-are seven template instances corresponding to the template
actional database. Let's use a stock movement database as expression in the above example. Because no constraints on
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z1, T2 andzs, the three item variables are instantiated to any ~ Phase-3 (frequent normalized extended itemset discov-
(*). 0o ery)
In this phase, we find the set of all frequent normalized
extended itemsets identified in Phase-2. Two algorithms for

As item constraints have been extensively studied in thgyenerating frequent normalized extended itemsets based on
traditional association rule mining [27,38,50,52,36,6,24, 18] gifferent mining plans are described in Sect. 6.

we focus on context constraints in this paper. The Boolean

expressio e, iS in @ conjunctive normal formy A co A Phase-4 (inter-transactional association rule genera-
...Acp, Where each; (1 <i <r)isoftheforme; ;1 Ve, oV tion)

...V Eachallowed; ; (1 <i<r, 1 <j<t)isa Using the frequent normalized extended itemsets, we can
constraint defined in the following sections. find the desired inter-transactional association rules. The gen-

With the two-level template model, mining multidimen- eration of inter-transactional association rules is similar to the
sional inter-transactional association rules consists of fougeneration of classical association rules [4] with minor mod-
phasestemplate translation, mining planning, frequent nor- ifications.
malized extended itemset discoyeand inter-transactional In the following sections, we describe how contextual con-
association rule generation straints are defined.

Phase-1 (template translation)
The input of this phase is user-specified high-level tem-3.2 Contextual constraints in templates
plate expressions that specify a set of Boolean constraints that . . . . .
extended item variables of the rules should satisfy (as show}[! & dimensional space, in addition to contextual points,
in Example 4). Such template expressions are transformely® introduce the concept oicope. A contextual scope is
during this phase to produce a set of template instances (43¢ Subspace delimited by two contextual poirts =
shown in Example 5), with all the contexts of extended item<\(d., s ....ds,,,) AL = Aa, ., ... d.,,) Where Vk (1 <
variables being instantiated. A template may imply one ork < m) (ds, < d., ), denoted as = [P, P.]. A contextual
severatemplate instance® which the rules discovered later Constraintis no more a predicate on contextual points and con-
must conform. textual scopes. It is defined based on a set of context-oriented
The template translation phase interprets and translate@Perators and context-oriented functions.
template expressions given as input by users into a set of tem-
plate instances. In a template instance, all the contexts of ex; 2.1 Context-oriented operations
tended item variables are instantiated so as to provide concrefé™"

guidance for the following mining processes. Section 4 examw\e first define a set of operators whose operands are ei-
ines this template translation procedure in detail. ther contextual points or contextual spaces. peand p’
be two contextual points, wherg = A, 4,,....4,,) and

Phase-2 (mining planning) P = Ay ay,...a,) Lets ands’ be two contextual scopes,

Like traditional association rule mining, we first discover h - _ A A
all normalized extended itemsets with support not less than &’ er(/es - [«1957 fe] = (A i) Ay ey ndy)]
user-specifiedninsup threshold. We call these itemsdts- ~ ands’ = [si,sc] = [Da ar,, i )s Az, i, )]
quent normalized extended itemsets. From the frequent itemWe have the following context-oriented operators:
sets discovered, we then derive inter-transactional association Operators on contextual points
rules with confidence not less than a user-specifigdcon f The operators=, <, < on two contextual pointg andp’
threshold. are defined as follows:

Different from traditional itemsets where all items are o p =/ iff Vk (1 <k <
within the same transaction, an extendeiemset underthe o p </ iff Vk (1 <k <
circumstancg of inter-transactional associatiqns may spanseve p < p, iff Vk (1 <k <
eral transactions. For example, to get one-dimensional inter- m) (dy < dj,).
transactional rules

“ » Operators on a contextual point and a scope
Ay (%), Ay (¥) = Ar)(*)”and P p p

“ " . . The operatorsnner, priori, rear on a contextual point
Ay (%), Ay (*) = Apa(x)”, we need to identify fre- ) )
quérl)t(?)-)iterr(\s)e(ts? by cour%tir%g(l gll those candidatéier];nysets pand a contextual SCO'_EZ [s5, s¢] are defined as follows:
C3 = {{Aw(*), A (x), Am(¥)} {Aw(x), A (), o inner(p,s) = true, iff s, <p <
Aqa)(*)}} across every 8 and 15 consecutive transactions. ® prior(p,s) = true, iff p < s,

The purpose of this phase is to identify candidate item- ® 7€ar(p,s) = true, iff sc <p

setsC}: to count at each pags< RuleLen), and decide the Operators on contextual scopes

generation plan for candidafeulec Len-itemsets. Details for The operatorgrecedent, inclusive, overlap on two

mining plan generation are described in Sect. 5. contextual scopes= [s;, s.] ands’ = [s,, '] are defined as
follows:

o precedent(s, s') = true, iff s, < s.

e inclusive(s, s') = true, iff ss < s, A s, =< s..

e overlap(s, s') = true, iff there exists a poinp; =
d4.,.), Suchthatnner(p;, s) A inner(p;, s').

1 In the paper, we us€;: to represent the set of candidate itemsets
with detailed contextual information, artc}. to represent the set of
candidate itemsets with both detailed contexts and item IDs. The
same forL; andLy. (diysdig ey
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3.2.2 Context-oriented functions e DistPointScope(k,V,s) 0 v, wherel < k < m,v
is a positive integer, anfl is one of the operators in

Besides the above context-oriented operators, we define the {=,#,<,<,>,>}

following five functions in arm-dimensional space. 6. Aggregate constraints.

e Size(k, s) returns the size of the contextual scope e agg(X) 0 v, whereagg is one of the aggregate func-
(i.e., number of dimensional values) on the kth dimension, tions in {min, maz}, X is one of the following
whichisd, —d. +1 context-oriented functionsDist Point(k, V1, V3),

€L Sk N . . .

e DistPoint(k, p, p') returns the relative distance between DistScope(k, s1, s2), DistPointScope(k, V, s),
the two pointsp and p’ on the kth dimension, which is Size(k, s), andv is a nonnegative integer.
dl, — dy.

Any contextual scope in the above constraints can be
obtained and substituted by two other scopes through the
Intersect function.

e DistScope(k, s, s') returns the relative distance between
the two scopes ands’ on the kth dimension, which is
d}, — d.,. Note thatDistScope is only meaningful when
the two scopes have precedent relationship.

e DistPointScope(k, p, s) returns the relative distance 33 Examples
between contextual poiptand contextual scopeon the

kth dimension. It equals tal,, —d;.) whenprior(p, 5) = e conclude our discussion about the template model with
true; and(dy — d, ) whenrear(p, s) = true. Note that g fe\y example contextual expressions in the context of stock
DistPointScope is only meaningful when the pointis not - ,oyement databases. This will illustrate the expressive power

inside the scope. of our template expressions to a certain extent.
e Intersect(s, s') returns the overlapped scope between

ands’. It equals tos’ wheninclusive(s, s') = true;and  Example 6“When two stocks rise together on the same day,
(At s, ) Aldey dey nnide,,)) WHEN which stock will go up one or two weeks later?” O
overlap(s, s') = true. Note that ntersect is only mean-

ingfulwhenthetwoscopeshaveeitherinclusiveoroverlap“v( ), Va(zs) = Va(zs) | (C C y", where
1(T1), V2(T2 3(T3 items Lcontext) s

One template for this association can be

relationship.
P Citem ¢ true and Coonpemt © (V1 = Vo = Ag) A
(DistPoint(1,Va,V3) =7 V DistPoint(1,Va,V3) =
3.2.3 Contextual constraints 14).

With the above defined context-oriented operators and funcExample 7*If stock ‘a’rises 1 day, and within the following 2
days another different stock rises, will stock ‘a’ continuously

tions, we can define six classes of contextual constraints a o : "
go up within the next 3 days following the rise of the second

follows: ctock?” -
1. Constant constraints. ) o
e Pointconstraint = A4, 4,....a,.), indicating thatv One template for this association can be
is at the pOinTA(dhdz,m’dm). “vl(a)7 VQ(JQ) = V3<(l) ‘ (Citewu Ccontea:t)”a where
e Scope constraint Citem : (x2 # a) and Ceontext : (Vi = A)) A

inner(V, [Aw A ), indicat- inner(Va, [Aqy, Aw)]) A (1 < DistPoint(1,V2,Vs) <

sp0eelsp ) eqrdem
ing that V lies inside the scope[A(d51 ,,,,, o, )5 3).
A(dﬁl,...,dem)]- i Example 8“If stock ‘a’rises 1 day, and directly after that there
2. Constraints between two poirs , Vs € Poini- is a stock rising within a period whose maximal span is 2 days,
d Vlj} V2, whered is one of the operators if=, < then which stock will rise during the next period of the same
) . length?” O
e DistPoint(k,V1,V3) 6 v, wherel < k < m, v is g
a nonnegative integer, ardds one of the operators in One template for this association can be
{=#<<>2} “Vi(a),Va(za) = Vi(23) | (Citem, Ceontext)” Where
3. Constraints on one scopes S;ope.- Citem : true and Ceonteat : (V1 = Ag)) A inner(Va, s) A

o Size(k,s) 8 v, wherel < k < m, s € Scope, v DistPointScope(1,V1,s) = 1 A maz(Size(l, s)) =
is a positive integer, and is one of the operators in 2 A inner(Vs, s') A Size(l, s) = Size(l, s') A
{=#<<>,>25 DistScope(1,s,s") = 1.

4. Constraints between two scopgssa € Scope-

e 0 (s1, s2), where § is one of the operators in
{precedent, inclusive, overlap}. 4 Template translation phase

e DistScope(k, s1,s2) 8 v, wherel < k < m,visa
positive integer, and is one of the operators ifi=, # We provide some heuristics for the translation of a template

, <, <, >, > into template instances. It proceeds briefly in the following
5. Constraints between a poiwt € P,;,,; and a scope € five steps:
Scope-

e 0 (V, s), whered is one of the operators ifinner, Step 1: unify comparison constraints with equal com-
prior, rear}. parison operator (=)
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Step 3: augment the template Boolean constraints for com-
The comparison constraintsX 6 v) involving one of  pleteness
the comparison operators i>, ><, <,#} and an integer
v are first identified from the template Boolean expressionThere exists the situation that users do not indicate any
Ceontext- This kind of constraints includeSize(k, s) 6 v, constraint for somé/;(s) (1 < i < p + ¢) in the template
DistPoint(k,V1,V3) 0 v, DistScope(k, s1,s2) 6 v, and Boolean expressiof..,.:c.¢- The aim of step 3 is to check
DistPointScope(k,V,s) 6 v, where Vi,Va € Poins and augment a default constant contextual scope constraint
and si,s2,5 € Scope- We then transform each of
them (X 6 v) into a set of disjunctive constraints
(X = w) V...V (X = wy), using only the equal A(mazspany ;mazspana,...;mazspanm)))”

comparison operator (=) plus integets, ws, ..., ws that  for theseV,(s), based on the fact that each extended itemset

satisfy the constrained scope requiremént)( For example, s supposed to occur under a maximal contextual scope of
the comparison constraints in the template in Example 7nterest to applications.

“(1 < DistPoint(1, Va2, Va) < 3)” can be translated into 3

“inner(Vi, [Awo,,...,0),

disjunctive constraints Dist Point(1,V»,V3) =1 V. step 4: transform the template Boolean constraint ex-
DistPoint(1,V3,V3) =2 V DistPoint(1,V3, V3) = 3. pression into a disjunctive normal form

In case that users only indicate a lower bound or a upper
bound of a comparison constraint like For convenience, users declare their context constraint

“DistPoint(1, V3, V3) > 1", we can invoke default con-  expressionsCoonsess(S) in a conjunctive normal form.

cations, users are usually interested in associations happening, | v¢, 5. . .Vey ) A (caaVeaaV.. Vea ) A oo Alcra

within a certain range, such as gas stations and fast-food out;. , v " v, ).
lets within 50 miles, stock indexes rising within a week, etc.. o facilitate the translation of one template expression

Here, we assume that for an extended itemset to be of intefntg several detailed template instances in the next step, we
est, there always exists a maximal contextual span along eagfansform it into an equivalent disjunctive normal form like

dimension, i.e.ma_xspanl, MATSPans, . . ., MALSPATy, . By (L1 A ACr1) V (c1aNCa i A A1)V ooV (er g, A
default, the following constraints are always valid. 62’;2 ALA CMT)’, so that each conjunctive component in
1) 0 < DistPoint(k, V1, Va) < maxspan, — 1 the formula can be instantiated independently into a set of
2) 1 < DistScope(k, 1, s2) < mawspany — 1 template instances in Step 5. For example, the expression
3) 1 < DistPointScope(k,V,s) < mazxspany — 1 “(Vi = Va = Ag) A (DistPoint(1,Vs,V3) = TV
4) 1 < Size(k, s) < mazspany, DistPoint(1,Vs, V3) = 14)” in Example 6 can be con-

After Step 1, one comparison constrainkfv) is  verted into {V; = V, = Ay A DistPoint(1,V,V3) =
converted into several constraints with equal comparisory) \/ (v, = v, = Ay A DistPoint(1,V, Vs) = 14)".
operator. At the first glance, Step 1 may result in a significant
increase in the size of templates. Nevertheless, consideringiep 5: instantiate extended item variables with constant
in quite a few applications, users are interested in associatiopgints
relationships within a certain narrow scope, i.e., the number

of valid values regarding in (X 6 v) may not be huge, such The |ast step is to instantiate ea¥h (1 < i < p + ¢)

an increase in the size of templates may not be as significan$ the template rule with a certain constant point based

as expected. on the given constraints. Such an instantiation process

. ) ) _is conducted for each conjunctive constraint component

Step 2: unify aggregate constraints with equal compari-c; A ¢, A ... A ¢, obtained from Step 4. For example,

son operator (=) according to the conjunctive constraints in Example 6
o . . (V1 =V, = A(O)) A DistPoint(1,V2,V3) = 7)", we

Similar to comparison constraints, aggregate constraintgan infer that ¥, = V, = A" and “V3 = Ary". Hence,

(agg(X) 0 v) involving aggregate operatorsuuz, min) iN - the original template rule¥; (z;), Va(z2) = Vs(z3)” can

the template Boolean expression can be transformed into a sk translated into one template instane®) (1), Aoy (2)

of disjunctive constraints using equal comparison operator (=), A¢ry(x3)". In addition, from the second conjunctive

plus a set of integers. The above default constraints'¢re.,  component [V, = V5 = Ay A

Size(k,s), DistPoint(k,V1,Vs), DistScope(k, s1,82),  DistPoint(1,V5, V3) = 14)*, we can derive another tem-

and Dist PointScope(k, V, s)) can be applied when users pjate instance Ay (1), Ay (2) = Aguay(as)” for the

boundX with only maz ormin. For instance, by taking the template in Example 6.

default constraint 4) into account, the aggregate constraint in _

Example 8 fnaz(Size(1, s1)) = 2" can be translated into 2 Example 9Referring to Example 6, ?/fter Step 5, the tem-

constraints Size(1, s;) =1 V Size(1, s1) = 2. plate Vi (1), Va(za) = Vs(x3)” whereCeonteat :
(Vi = Vo = Ay) A (DistPoint(1,V2,V3) = 7V
DistPoint(1,V2,V3) = 14) can be translated into two
template instancest) Ay (z1), A)(z2) = Ar)(z3);
2) Aoy (1), Aoy (z2) = Ay (@3). O

For aV; bounded with a contextual scope, we first in-
stantiate the scope with a constant contextual scope, and



L. Feng et al.: A template model for multidimensional inter-transactional association rules 161

then assign each point that lies within this scopeMa necessary extendeditemsets in the plan for finding an ex-

Note that the default constraintiriner(V;, [Aq,o....0), tendedk-itemset template instancg (< k). It is based on
A(mazspany ;mazspans,...,mazspany)))  always sits behind  the observation: the more extendedemsets are included in
during this translation step. the plan, the more opportunities the uninteresting rules can be
pruned in an early stage. The joint mining plan is to deal with
Example 10The constraintinner(Va, [A(1), A(2)])"inEx- multiple template instances together. Different from separate

ample 7 is translated int¥; = A or Vp = A(z from  mining plan, it attempts to approach the goals as quickly as
which we can derive six template instances for the templatgossible. In other words, it is based on the observation that

“Vi(a), Va(z2) = V3(a)”, where spending time for intermediate extended itemsets is unneces-
Ceontext : (V1 = A(q)) A inner(Va, [Aq), A@)]) A sarily large. In order to approach the goal, three techniques
(1 < DistPoint(1,Vy,V3) < 3): are proposed: joining, converging and speeding. Joining tech-

1) Ay (a), Apy(z2) = Ap)(a); ) Ay(a), Aqy(z2) =  nique is to join two arbitrary:;-itemset and:,-itemset and
Ay(a); 3) Aw)(a), A 1)(332) ) (a); form a possible up tai + k.-1)-itemset. The idea of converg-
4) Aoy (a), A(z)(lz) = A (a); ) Aqy(a), Ag)(z2) =  ingis to find possible shortest paths for all template instances
Awy(a); 6) Awy(a), A ) y(a). O by further utilizing the joining technique. The speeding tech-
nique is to identify the starting time of adopting joining and
Example 11Two contextual scopesands’ are involved in converging.

2)(372 = A

Example 8. According to the restrictions We illustrate our techniques using 1-dimensional inter-
“DistPointScope(1, A(gy, s) = 1 A maz(Size(l, s)) =  transactional association mining in this paper. Our techniques
2 A Size(l, s) = Size(1, s') A DistScope(l,s,s') = areapplicable to n-dimensional inter-transactional association
1", we can derive two possible pairs, s') where(s = mining. To simplify expressions, we remove braioiewhich

[A( A(l ], 8 =[Aw@), A@)]) and(s = [An), Ap)], s = surrounds coordinates of contextual points so as tay;der

(A (3), (4)]) The constraint inner(Va, s) A mn@r(va, A;y. In addition,itemset andextended itemsegan be used
s')" implies that “inner(Vs, [Aq), Aw]) A inner(Vs,  interchangeably in the following discussion.

[A2) A(g)]) or “inner(Va, [Aqy,Az))) A inner(Vs,

[A (3), Aw))”

From each of them, we can further instanti®eandVs 5 1 Separate mining plan
by enumerating all possible constant points within the cor-

responding scope, and obtain the following five template in—One simple mining plan is to treat each template instance

stances for the template in Example 8 belonging to one rule template separately, and identify can-
Vi(a), Va(zz) = Va(zs)™ didatesC; (1 < k < RuleLen) for each individual tem-
1) Ay (a), A(U(x?) = A(9)(23); 2) A(O)(a)7A(1>(x2) =~ plate instance in a similar way as Apriori-Gen does [4]. That
Ay (73); 3) Aggy(a), A (332) = Aw(@s3); 4) A)(a), s each candidate-itemsetX” = {Ay, (1), Ag, (2),- -,
A (z2) = (3)(953) )A(O)( a), A(2)(x2) = Aw(@s)- Ag,_ (wp_1), Ag. ()} in Cy is generated by joining
0 two frequent g-1)-itemsetsX, X’ € Lp_;, where X =
{Adl (ml) Aqg, (l‘g), ) Adk72($k_2), Adk—l(xk?_l)} and

{Ad, (x1), Ady (22), -+, Agy_y (Th—2), Agy (k) },
hose first g-2) extended |tems are the same, and
“(xg—1 < m1) V precedent(Aq,_,, Ag,)". Note that

all candidate and frequent itemsets under study are nor-

Proof. Steps 1-3 perform semantically equivalent templatemalized by default. Due to the monotonicity property
translation. The simple syntax conversion of the templatehat “any subset of a frequent itemset must be fre-
Boolean constraint expression into an equivalent disjunctivequent, L;_; also includes all the normalized subsets of

Property 3 All template instances implied by a template can y-
be completely generated by the Template Translation Phase

normal form, performed in Step 4, also does not alter the seX”, i.e., Norm({Ag,(z2), A4, (x3), -+, Ad,_,(Tk—1),
mantics of the template constraint obtained after Step 3, mak4,, (x)}), Norm({Ag, (z1), Ags(x3), -, Ad,_; (Th—1),
ing the final template instantiation in Step 5 complete. O Ag (xp)}), -+, Norm({Ag (x1), -, Day_s(Tk—3),

Ag,_, (xg—1), Ag, (zx)}) for pruning purpose. For each tem-
plate instance, candidate itemsét$ are designated from
o i k = RuleLen to 1 as above, at which the mining process

5 Mining planning phase will target later on. Since such a plan deals with a template

instance separately, we refer to it as deparatanining plan.
Mining multidimensional inter-transactional association rules
is a computationally intensive problem, requiring consid- Example 12Suppose we have two template instances af-
erable search efforts compared to the classical associaticler template translation: & (x), Ax(x) = A4(x), Ag(x)”
rule mining. Template instances specify the patterns of interand “Ag(x), A1(x) = As(x), As(x)". Table 3 illustrates
transactional association rules. We need to find all rules thatandidate itemsets identified by tlseparatemethod. To
satisfy the template (not a part of template). It is goal-drivendetect rules conforming to the first template instance,
mining. Planning is needed. There are two basic planningve need to calculate the supports of all candidate 4-
strategies: separate mining plan and joint mining plan. Thatemsets{ Ay (x), Aa(x), As(x), Ag(x)} In C; to get L.
separate mining plan is to deal with a single template instanc8efore that, two such kinds of candidate 3-itemsets as
at a time. The basic idea of separate mining is to include alf Aq(x), Az (x), Ag(x)} and {Ag(x), Az (%), Ag(x)} should
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Table 3. Theseparatemining plan: candidate itemsets to be counted. Notd en gives the length
of the minimal window that cover§’; in the 1-dimensional space

Ag(x), Aa(x) = Aa(x), As(*)

{Ao(x)} {Ao(x), A2(¥)}  {Ao(x), A2(x), Aa(¥)}  {Ao(x), A2(x), Aa(x), Ae(*)}
{A2(%)} {Ao(*), Aa(¥)}  {Ao(x), Az2(x), As()}
{A4(%)} {Ao(%), A6(¥)}  {Ao(*), Aa(x), As(*)}
{As(+)}

Ao (), A1(x) = Asz(x), As(*)
{Ao(%)} {Ao(*), A1(x)}  {Ao(x), A1 (%), As(¥)}  {Ao(x), Ar(x), As(x), As(+)}
{A1(x)} {Ao(x), A2(x)}  {Ao(*), A1(*), As(x)}
{As(+)} {Ao(%), As(¥)}  {Ao(x), Az2(x), Aa()}
{As(+)} {Ao(x), Aa(x)}  {Ao(x), As(x), As(*)}

{Ao(x), As(x)}

Ct 3 Cc3 Ci
ICT| =7 |C3| =6 |IC5| =6 |ICi|=2
W-Len(CY) =7 W-Len(C3) =7 W-Len(C3)=717 W-Len(Cy) =17

be counted in order to generate candidate 4-itemsets. Fdable 4.A join example betweely andV
pruning purpose, another two subsets {afig(x), Az (x),

Ay(%), Ag(¥)} after normalization, i.e.Norm({Ag(x), U Ao(a) Az(b) As(c)

Ay(x), Ag(*)}) = {Ao(x), Aa(x), Ag(*)} and v Ao(b) Aa(c) Aa(d)
Norm({Aa(x), Ag(x), Ag(*)}) = {Ao(*), Aa(x), Ag(x)}, UsV Aya) Az (D) Aq(c) Ag(d)
will also go toC3. Candidate itemsets under the second tem-

plate instance are decided in a similar way. m|
2) There exists a nonnegative integérsuch that for any
Ag,, (u;) € U’, there exists @\,, (v;) € V', where(u; =

5.2 Joint mining plan v;) and(dy, = d,, + d). We calldlthejoinable distance O

Example 13For two itemsets

Counting each candidate itemset in Table 3 requires searchingi = {4o(a), A2(b), A3(c), As(d) } and

several transactions each time. One question we pose is thal = {Aq(b), A4(d), Ag(e)}, there exist a

“can we just count those necessary candidate itemsets whiojzlf = {Ay(b), As(d)} and a7} = {Ay(b), Ay(d)} satisfying
span as few transactions as possiblelf? this section, we  the above two defined conditions. Therefore, we Eaynd
discuss several techniques, namghjning, convergingand  /; are joinable, and the joinable distanc€.i€omparatively,
speedingbased on the observation thaeducing the length v, = {Ap(a), Ag(b), As(c)} andUs = {Ao(d), As(d)} are
ofthe minimal window that covers candidate extended itemsetgot joinable, as there exist g, C Vo andUj) C U, that

can substantially reduce the running time of frequent itemsetsatisfy the above two conditions. |
detection.
Ininter-transactional associations, both items and their ocDefinition 4 Assume that
currence contexts are captured within an itemset. For examt/ = {4y, (u1), Aq,, (u2), -+, Aq, (us)} and
ple, from two itemsets = {Ag(x), Az (), Az(x)} andV = V = {A4q, (v1), Aa,, (v2), -+, Aa,, (v;)} are joinable on

{Ao(%), A1(), A7(x), A11(*)}, we know that the last two 7/ « 7 and vV’  V, with d as the joinable distance/
items of U appear in two consecutive transactions, similar tojoin 1/ is given as(U 1 &y V) = U U W, whereW —

the first two items inV. Thus, besides the traditional way {A; _,(v;) | (Aq, (v;) € V) A (Ag, (v;) & V')}. O
of joining two (k-1)-itemsets based on the filst2 common ‘ ’ ‘

extended items, such common relative positions also offer anExample 14Let U = {Ap(a), Az(b), Ays(c)} and

other possibility for joining two itemsets which could be of 7 — A\ (), A,(c), Ay(d)}. Theresultot/ join V onU’ and
different size. In the following, we define th@nable condi- V' wherel’ = {2s(b), Au(c)} andV’ = {Ag(b), As(c)}

tion for two extended itemsets and givépan operator. is {Ao(a), As(b). Ay(c), Ag(d)}, as shown in Table 4. The
. . ) joinable distance is 2.

Definition 3 Given two itemsets Let U; = {Aq(a), A1(b)} andVi = V = {Ag(b), As(c),

U={4a, (w), Aa,, (u2)," -, Ad,, (us)} and A4(d)}. The result ofU; join Vi on U] = {A;(b)} and

V = {44, (1), Ay, (v2), -+, Aa,, (v)}, Vand U are  yi —f A (b)) is {Ag(a), A1 (), As(c), As(d)}. The join-

joinable if and only if there existV/’ ¢ U andV' C V that able distance is 1. O

satisfy the following two conditions:
1) U’ andV"’ has equal number of extended items, denoted  Along with thejoining operation, the next question arises:
as|U'| = |V’|. “which itemsets are suitable to heined in order to gen-
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erate candidateRuleLen-itemsets which need less count- tersk,-itemsets with common relative positions among more
ing effort? One technique we use is callecbnverging, than one template instance. If this fails, it selects an itemset
which converges all template instances together. To illusfrom Sel f Common; which registers:,-itemsets with com-
trate, let us return to the previous two template instancesnon relative positions within; itself. If this fails again, then
“Ag(x), Aa(x) = As(x), Ag(x)” and “Ap(x), A (x) = a ks-itemset with the minimal window size ity is chosen
As(x), As(*)". We note that some common relative posi- (line 5-8). The selected itemset, as well as its subsets used for
tions exist either within or among template instances. Likethis itemset's generation and pruning purpose, are stored in a
{Ao(%), Aa(x), As(x)}, {Aa(x), As(x), As(x)} in the for-  candidate pool (line 9-10). The second Sufficient-Candidate-
mer, and{ A, (x), As(x), As(x)} in the latter, they actually Pool-Checking Phase examines whether the itemsets in Can-
convey the same contextual information (i.e, for every alter-didatePool identified at Phase 1 can be successfully joined
nate transaction). Based on such observation, we employ thrder each template instance (line 12-13). If not, it continues to
heuristics to help identify those joinable itemsets: (a) appeartook for joinable itemsets following the above three heuristics
ing in template instances as frequently as possible; (b) with &line 14) and stores the selected itemset and its subsets in the
joinable size as large as possible; and (c) with a window thatandidate pool (line 15-16).
covers joinable items as small as possible. Taking the two template instances

Table 5 shows th@ining mining plan, which derives the ¢; : Ag(x), Aa(x) = Ay(x), Ag(x) and
targetC’Z by {AQ(*),Al(*)} jOin {Ao(*), AQ(*), A4(*)} to : AQ(*)7A1(*) = A3(*), A5(*)
as given in Example 14. Fot < 4, the way to gener- in Table 5 for example, letk Limit=3, k;=3, we have
ate C}; is similar to that in theseparateplanning. Can-  CrossCommon = {Ag(*), Aa(x), Aa(x)},
didate 3-itemset{Aq(x), Aax(x), Ag(*)} can be obtained SelfCommon; = {Ag(x), As(x), Ay(x)}, and
by joining two frequent 2-itemset§Aq(x), Ax(x)} and  SelfCommony = (). Figure 2 first selects a 3-itemset
{Ao(x), As(x)}, which are thus included i@ . Accordingly,  {Ag(x), A2(x), Ag(x)} from CrossCommon for both t;
to getCs, we need to first count and detect frequent 1-itemsetsind ¢2, and puts it intoCandidatePool. All its low-level
{Ap(x)}, {A1(x)}, {A2(x)} and{A4(x)}. subsets entar'andidate Pool as well, making

Compared to theeparatamining plan in Table 3, thpin-  CandidatePool = {{Ag(x), Aa(x), As(x)}, {Ao(x),
ing mining plan exhibits a much smaller search space intermsiy (%)},  {Ag(x), As(x)}, {Ao ()}, {A2(x) }, {Aa(x)}}.
of both candidate numbers and the minimal window that cov-Later in the Sufficient-Candidate-Pool-Checking Phase, the
ersC}; ateachiteration. Especially for the reduction of window algorithm checks to ascertain thatcan be derived by joining
size (i.e., starting from each database transaction, each timevo {A(x), Ax(*), A4(x)} in CandidatePool. In other
the number of transactions to look at), our previous experi-words, Join(t1, CandidatePool) # Fail. However, with
ence indicates that the window size plays a dominant role orall the itemsets inC'andidate Pool so far, no two itemsets
inter-transactional association rule mining performance [32].can be joined to derivg, that is,

The other technique we use is callggkeedingwhich aims  Join(ta, CandidatePool) = Fail. In this case, another
at limiting the number of database scans in the presence d-itemset{Aq(x), A1(x)} with the minimal window size
long rules. We restrict < k < K Limit by performing a is selected fot,, enlargingCandidatePool with {Ag(x),
series ofoining operations instead of one. For instance, inor- Ay (x)} and {A;(x)}, i.e., CandidatePool = {{Ao(x),
der to derive target candidafe\o (x), Aq(x), Aa(*), Az(x), Ao (x), Ag (%)}, { Ao (x), A2 (%)}, {Ao(x), Ag(x)}, {Ao(x),
As(x)}, we can perform two join operations. First, let A;(x)}, {Ao(x)}, {Aa(x)}, {As(x)}, {A1(x)}}. As two
U = Vi = {Ao(x),A1(x)}. Then, Uy yy &y Vi = itemsets fromCandidatePool, i.e., {Ao(x), A1(x)} and
{Ao(%), A1 (), As(¥)} whenU! = {A;(x)} and V] = {Ap (%), Aa(x), As(*)}, can be joined to generate (Exam-
{Ao(x)}. Second, letl/; be the result oftU/; v @vy Vi, ple 14),Join(t2, Candidate Pool) # Fail. The mining plan
and letV, = {Ag(x), Ai(x), Ay (x)} obtained by joining construction thus finishes, with the result shown in Table 5.
two {Ag(x), A1(x)} as theseparate planning does. Then,
Us U2’EBV2"/2 = {Ao(*)7Al(*),AQ(*),Ag(*)7A3(*)}When . . .
Ul = {Ay(x)} andVy = {Ao(x)}. Thus, after th&"? pass, 6 Frequent normalized extended itemset discovery phase

we can directly construaf’s without L. , . .
Here, thei Limit parameter can be set either beforehand,Based on the two different mining plans, we present two dif-
ferent frequent normalized extended itemset discovery algo-

or dynamically determined during the mining process. Basi-
y y J ap ithms, namelyseparateand joint algorithms. Like Apriori

cally, the number of frequent itemsets returned from previou ) A
passes, the number of candidatele Len-itemsets derived  [4]: Poth algorithms make multiple passes over the database.
Each pass consists of two phases. First, the set of candidate

by joining the discovered,;s (i < RuleLen), and the trade- ' o ; - ;
off between database scanning and extra candidate itemsdf€MSet; as indicated by the corresponding mining plan is
nerated. The algorithms then scan the database. For each

counting, etc. are some factors which affect such a paramet&®™ ' . .
setting. We leave this issue to a further study. minimal extended transaction set, they determine which can-

Thejoining, convergingandspeedingechniques lead us didates inC, are contained and increment their counts. At the
to thejoint mining plan. Figure 2 outlines such a plan con- €nd of the pass(’;, is examined to check which of the can-
struction procedure. It has two steps. The first Initializationdidates are actually frequent, yieldidg. Considering that a
Phase intends to find appropriate joining itemsets for eactiuge number of itemsets ifl, may be generated, especially

template instance using the above three heuristics. That is, N the case of inter-transactional association rules, we adopt a
it first selects an itemset froifirossCommon which regis- S|m|I§1r technllque of hashing as [40] to filter out unnecessary
candidate 2-itemsets.
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Table 5. Thejoint mining plan: candidate itemsets to be counted

Ao(*), AQ(*) = A4(>)<)7 Ag(*)

{Ao(+)} {A0(x), A2()}  {Ao(x), A2(x), Aa(x)}  {Ao(¥), A2(x), Aa(*), As(¥)}
{A:2(+)} {Ao(x), Aa()}
{Aa(x)}

Ag(x), A1(x) = As(x), As(*)

{Ao(x)} {Ao(x), Ar(¥)}  {Ao(¥), Aa(x), Aa()}  {Ao(*), A1 (%), Az(x), As ()}
{A1()} {Ao(x), Az(x)}

{Aa2(x)} {Ao(x), Aa(x)}

{A4(=)}

o Cs3 Cs Ci

ICT| =4 IC5|=3 IC51=1 |Ci| =2

W-Len(CY)=5 W-Len(C5)=5 W-Len(C3)=5 W-Len(C;) =7

Input: a set of template instancés, to, ..., ¢, }.

Output: a candidate pool containing candidate itemsgtdk = 1,2,..., ks, RuleLen).

Let Sel fCommon,; be the set ok,-itemsets with common relative positiongthin ¢;;
Let CrossCommon be the set ok;-itemsets with common relative positioamongall ¢;s.

Initialization Phase

1 CandidatePool = {;

2 if (RuleLen — 1 < K Limit) then

3 ks = RuleLen — 1

4 elseks = K Limit; [/ speeding to reduce the number of database scans

5 foreachtemplate instancg do

6 if Select(t;, ks, CrossCommon) = Failthen // select as-itemset for the joining phase
7 if Select(ts, ks, Sel fCommon;) = Failthen

8 get ak;-itemset with the minimal window size from;

9 CandidatePool + the selecteds-itemset;
10 CandidatePool + all low-level subsets of the selectégritemset;
11 endfor

Sufficient-Candidate-Pool-Checking Phase
12 foreachtemplate instancg do
13 while Join(t;, Candidate Pool) = Fail do

14 select anothek-itemset fort; (k < ks); // following step 6-8

15 Candidate Pool + the selected,-itemset;

16 CandidatePool + all low-level subsets of the selectég-itemset;

17 endwhile . . .

18 endfor Fig. 2. The joint plan generation procedure

6.1 The separate mining algorithm (line 6-8). After the first database scan, the frequenfsas

delivered (line 10).

Figure 6.1 gives theeparatemining procedure by extension Pass 2.A candidate 2-items€tAg (i1 ), Aq, (i2)} is gen-
of Apriori. erated from any two frequent 1-itemsétd (i1) }, { Aa, (12)}
) i ) in L, (line 11),i.e.,Cy = {{Ao(i1), Aa,(i2)} |

Pass 1. The candidate sef’, is generated by attaching {Ao(%), Ag,(+)} € C3 A {Ag(i1)} € L1 A {Ag, (iz)} €

each item ir with all possible contextual positions specified 1, 5 (iy < iy V dy > 0) A HashTable|func({Ao(i1),

in C7 (line 1), i.e.,Cy = {{Aa(i)} [ i € T N {Aa(x)} € Ag, (i2) D]/ T > minsup}.

C7}. Then, starting from each extended transactitiit), Note that all candidate itemsets should be normalized. For

the algorithm checks whether an iterexists in the extended  candidate 2-itemsets, their hash values should not be less than

transgct|pnAc+d(t’). If so, the count of candidate itemset ,,;, ;) « |Tx|. After generating”s, the algorithm examines

{Aq(1)} increases by one (line 3-5). In addition to counting eyery minimal extended transaction set in the database, say

candidate 1-itemsets, the first pass also has the respon3|b|l|(9/Ac(t), Aesa, (')}, that may contain candidate 2-itemsets

of hashing all normalized 2-itemsets (e840 (i1), Au, (i2)}  like { Ag (iy ). Ag, (is)}. If (iy € ¢) and(is € ), the count of

where{Aq(x), Aa,(x)} € C3), which are contained in the  5_jtemset{ Ay (i;), Ay, (i2)} will be added by one (line 12-
current minimal extended transaction set, into a hash table
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Table 6. A sample realistic stock data, whederepresents IBMp
represents IPG(International Public Groupyepresents AES(The
AES Corp.),d represents AEE(American Corp.), andepresents
XEL(Excel Energy)

Extended trans. Date Stocks

A(O)(t1) day IBM

A(l)(tz) day2 |PG, AEE, XEL
Ag)(ts) days IBM, AES, AEE, XEL
Azy(ta) days IBM

Ay (ts) days IBM, IPG, AES, AEE, XEL
As)(ts) days IBM, AES, AEE
Agy(tr) dayr IBM, IPG, AEE
Ary(ts) days IPG, AES, AEE, XEL
Ag)(to) dayo IPG, AES, AEE, XEL
Agy(tio) dayio 1BM

Table 7. The separateandjoint mining plans forAq(x), Ay () =
APICY!

Ao (), A1(x) = Aa(x)
separate{Ao(x)} {Ao(x), A1(¥)} {Ao(x), A1(x), Az(x)}
mining {Ai(x)} {AQo(x), Aa2(*)}
plan {Ax(*)}
joint  {Ao(x)} {Ao(*), Ar(x)} {Ao(x), Ar(x), Aa(+)}
mining {A:(x)}
plan

Ct C3 Cs
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In the following, we illustrate the steps of the separate
mining algorithm using a small realistic stock data shown in
Table 6. The database records 10 days’ rising movement of
five different stocks in March 2001 in USA, with time as the
dimensional attribute. Each transaction details stocks whose
prices are lower than the previous trading day. Assume the
template instance used i&;(x), A;(x) = As(x). Table 7
gives the separate mining plan, i.e., candidate itemsets to be
counted. Let the support count threshold be 5.

Example 15According to the mining plan, the set of candidate
itemsetsatpass 168 = {{Ao(x)}, {A1(x)}, {A2(x)}}. By
scanning the database once, we get 13 frequent 1-itemsets with
count values:

count({Ag(IBM)}) =7, count({Ag(IPG)}) = 5,
count({Ag(AES)}) = 5, count({Ag(AEE)}) =17,
count({Ao(XEL)}) = 5 count({A(IBM)}) = 6,
count({A1(IPG)}) =5, count({A1(AES)}) =5,
count({A1(AEE)}) =7, count({A(XEL)}) = 5
count({Ao(IBM)}) = 6, count({A2(AES)}) =5,

count({A2(AEE)}) = 6.

From L;, candidate 2-itemset€’s = {{Ag(x), A1(x)},
{Ao(x), A2(x)}} are generated, with 5 frequent itemsets re-
turned at pass 2, which are

6.
S)\o(IBM), A (AEE),

count({Ao(IBM), A1 (AEE)}) = 5,
count({Ag(AEE), A (IBM)}) = 5,
count({Ag(AEFE), AL (AEE)}) =5,
count({Ao(IBM), As(AES)}) =5,
count({Ao(IBM), A2(AEE)}) :{
A

At pass 3, 2 candidate 3-itemsefs)(

A (AES)} and {A¢(IBM), A (AEE), Ay(AEE)}, are
derived from L, according to C3 {{A0(x), A1 (%),
Ag(*)}}. As the subsef Ag(AEE), A1 (AES)} of the first
one is not frequent, we are only left with the second can-

14). The second scan of the database will deliver the frequendidate. By scanning the database, we get its count value 5,

setLs (line 15).

Pass k | < k < RuleLen). Given Lj_1, the can-
didate generation functiok-Apriori-Gen(L;_1) returns a
superset ofL; (line 17). The procedure has two parts.
In the join phase, two extendedk{l)-itemsetsX, X’ €
Ly_1, which have the first{-2) extended items in com-
mon, are joined to derive a candidateitemset. Let
X = {A@a)(@1), -y Dap_o)(@h—2), A, (T6-1)}
and X' = {Aq,)(x1), s Ady o) (Tr—2), Agay)(zr)},
where (zy_1 < x) or precedent(Aq,_,, Aqg,). We can
generate a candidate-itemset X" = {Aqg,)(z1), ...,
A(dkiz)(xk72), A(dkil)(xk,l), A(dk)(xk)} It is obvious

that X"’ is also normalized due to Property 1 that any super-

set (X”) of a normalized itemsetX, X’) is also a normal-
ized itemset. Allk-itemsets obtained in the join phase com-
prise a seCiOi”. Next, in theprunephase, all those extended
k-itemset(s) inC;°" which have somek¢1)-subset(s) not
in L, are discarded, leading to the candidate Ggt=
(X" (X" €™ A (VWY CX"([VY|=k—1)—= (Y €
Ly—1))}

The candidaté-itemsets are counted by making one pass

over the database in a similar fashion as countig(line
18-20), from whichLy, is derived (line 21). Such a candidate

generation and counting process terminates after some itera- whereY = {Awy (21)

tion whenk > RuleLen or Ly_; = (.

satisfying the count requirement. The separate mining al-
gorithm thus finishes with the result; = {{A((/BM),
A (AEE), Ay(AEE)}}. O

Correctness. The key to the correctness of the above
algorithm lies in the following lemma.

Lemma 1 Any frequenk-itemsetinL, isincludedinCy, i.e.,
Lk g Ck.

Proof.We prove the lemma by induction.

1) Whenk = 1, L; C (C; since(; includes all possible
l-itemsets irCy that could be potentially frequent.

2) When £k 2, because the hash value
HashTable|[func(z)] for any frequent 2-itemset
x {Ao(i1), Ag,(iz)} should not be less than
minsup * |Tg|, Co gives all possible normalized 2-
itemsets inC5 that could be potentially frequent, i.e.,
L2 g CQ.

3) Assume the lemma holds whén= n. Without loss of
generality, assum& = {A4,y(i1), ..., A(a,_,)(in-1),
Aa,)(in), A, 1) (ins1)} is @ frequent f+1)-itemset
in L,y (e, X € L,4). LetY, YV C X,

s A1) (in-1)s A, (in) },

A(dn—l)(in_l ) (dn+l)(in+1)}

= {A,) (1),
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Input: a set of candidate itemsets; (k = 1,2,. .., RuleLen) identified by theseparatemining plan;
aminsup support threshold.
Output: a set of frequent itemsefs;.

k=1
1 Gi={{Au@)}[ieT A {Aa(+)} € CT};
2 setall the buckets df ashTable to 0;
3 foreachextended transactiad.(t) € T do
foreachcandidater = {A4(i)} € C:1 do
if 3A.+a(t') € T (i € t') then z.count++;
foreachi; € t (whereA.(t) € Tg) do // build hash table
foreachis € t” (whereA 14, (t") € Tg) do
if {Ao(*), Ad2 (*)} S C; then HashTable[funC({Ao (il), Ad2 (ig)})]++;
endfor
0 Ly ={x:{Aq®)} | (x € C1) A (z.count/|Te| > minsup)};

P Oo0o~NO O

k=2

11 Co ={z: {Ao(i1), Auy (i2)} [ {Ao(%), Aay ()} € O3 A {Ao(in)} € L1 A {Aa,(i2)} € L1 A
(i1 <i2Vd2 >0) A HashTable[func(@))/|Te| > minsup};

12 foreachextended transactiod.(t) € T do

13 foreach candidater = {Ag(i1), Aa, (i2)} € C2 do

14 if (i1 €t) A JActa,(t') € Te (i2 € ') then z.count++;

15 Ly = {z: {Ao(41), Ad,(i2)} | (z € C2) A (z.count/Tg| > minsup)};

3 <k < RuleLen

16 for (k = 3; (Lix—1 # 0) A (k < RuleLen); k + +) do
17 Cr=E-Apriori-Gen(x—1);

18 foreach extended transactiod.(¢) € 7z do

19 foreach normalized candidate = {Aq, (1), ..., A4, (ix)} € Cx do

20 if JAc1a, (') € Tr (i € t') (1 < j < k) then z.count++;

21 Ly ={x:{Ag (41), -+, A, (i)} | (x € Ck) A (z.count{Tg| > minsup)}; . )

22 endfor Fig. 3. The separate mining algorithm

According to Property 2, any subset & should be in  {{Ay(x)}, {A1(x)}} atpass 1 and’s = {{Ag(x), A1(x)}}

L,. Thus,Y, Y’ € L,. In the join phase, the algorithm at pass 2. FromLy ={{A¢(a), A1(d)}, {Ao(d), A1(a)},
joins Y andY’ to getX € CJ°7. Thus, after the join  {Ao(d), A1(d)}}, the algorithm performs two join op-
phase L, C Offf?- By similar reasoning, the prune erations to derive 2 candidate itemsets at pass 3. That
step , where all itemsets whosesubsets are not ih,, are 'S {Ao(a), Ar(d)}a,(a) Dag@) {Ao(d), Ar(a)} ={Ao(a),
deleted from7°" | also does not discardl from 7% A1(d), Az(a)}, and{Ag(a), Ar(d)}a, (@) Sao(@ {Do(d),

- ntLe 1 Ay(d)} ={Ap(a), A1(d), As(d)}. Since only the second can-
leaving X € Cy, 1. Therefore L, 11 C Cp 1. didate has a count value 5, which is not less than the specified
Based orl ), 2) and3), the lemma is proven. O count threshold, the algorithm terminates with the frequent

3-itemset{ Ag(a), A1(d), Az(d)} returned. ]
6.2 The joint mining algorithm Correctness.As the correctness of Fig. 3 has been demon-

strated, if we can show that the target frequéhtic Len-

Thejoint algorithm (Fig. 4) is based on thieint mining plan.  itemsets being discovered by Fig. 4 is the same as those dis-
The differences between the two algorithms are two. First, th&overed by Fig. 3, the correctness of Fig. 4 can be proved
candidate itemsetS; to be counted at each pass are differentaccordingly.

due to the different mining plans. Second, jhiat algorithm
only counts itemsets tilk = k,, while in the final speeding
phase, it generates candiddtele Len-itemsets by thgoin
operation defined in the previous section (line 1), and the
counts these candidates to obtain frequente Len-itemsets .
(lines 2-5). Proof. It proceeds in two parts.

To compare with the separate mining algorithm, in the ~ First, let. X = {Aq, (z1), -+, Aa,_, (¥r-1), Aq, (2,)}
following example, we apply the joint mining algorithm to (r = RuleLen) be a target frequent itemset discovered by
the realistic data in Table 6. the joint mining algorithm. With the downward closure prop-

erty (Property 2), any of its subsets (e.g.,
Example 16According to the joint mining plan in Ta- {Ag (z1), -+, A4, _,(xr—2), Aa,_, (xr_1)}, {Aa, (1), -,
ble 7, the joint mining algorithm only count€; = Ag,_,(xr—2), Ag, (x,)}, etc.) is also frequent. Thus, under

Lemma 2 A target frequentRule Len-itemset is discovered
by the joint mining algorithm if and only if it is discovered by
rJ&he separate mining algorithm.
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Input: a set of candidate itemsets; (k = 1,2,. .., ks, RuleLen) identified by thgoint mining plan;
aminsup support threshold.
Output: a set of frequent itemsefs;.

1 <k < ks Il ldentical to theseparatealgorithm

k=RuleLen // the Speeding Phase

1 Cy=Join-Gen{Lq,..., Lk, });

2 foreachextended transactiad.(t) € T do

3 foreach normalized candidate = {Aq, (i1), ..., Aq, (ix)} € Cx do
4 if 3Ac4q, (') € Te (i € t') (1 < j < k) then z.count++;

5

Ly ={x:{Aq4 (1), -, Aq, (ig z € Cr) N (z.count|Tg| > minsup)}; ) o o )
b= e {Aa () @ (@) k) AL UTe| 2 Fig. 4. The joint mining algorithm

the separate plan, such a candid&tean also be generated and various choices, introduced in the paper, are left in a fur-
and counted using its candidate generation method. ther study.

Second, leX = {Ay, (z1), -, A4, _, (xr-1), Ag, ()} In the following, we first describe the methods used to
be a target frequent itemset discovered by the separatgenerate synthetic data and template instances. Section 7.3
mining algorithm. SinceX is the targetRuleLen-itemset,  presents some experimental results on synthetic data. Results
which means that its contextual positions conform to theobtained from real data are described in Sect. 7.4.
template instance, without loss of generality, assume the
join operation carried out by the joint algorithm is between ) .
two itemsets,Uy @y V, with ky= RuleLen-1, where 7.1 Generation of synthetic data
U= {Adl (ul), ey Ada(ua),

Adpor (tap1)serns Aay(u)} (1 < a < b < RuleLen), The method used by this study to generate synthetic data is

similar to the one used in [4] with some modifications noted

V={A4,,,-d(uat1),. .., Ag,—a(us), Ad,,,—a(us+1), below. Table 8 summarizes the parameters used and their set-
oo Agy —a(ur)} (deyr > d,. .. dy, > d), tings.

U’ = {Ador (Uag1)s .-, Agy(up)}, V' = We first generate a sét of the potentially frequent ex-
{Ad1—a(tay1), - - -, Ag,—a(up)}, and the joinable distance tended itemsets which may span several transactions (e.g.,
isd. {Ao(a), A1 (D), Az(c)}), and then assign a frequent extended

As both algorithms share the same procedure of discoveritemset fromL to transactions. Items and their contextual po-
ing frequent itemsets befote= RuleLen, to prove thatX sitions in the first frequent itemset are chosen randomly, where
can also be detected by the joint mining algorithm, we onlyitem is picked up from 1 t&V, and its relative contextual posi-
need to show that there exist two frequent itemseéts Ly tion is picked up from O té1. To model the phenomenon that
andV € Ly, (wherel < |U|,|V| < RuleLen), on which  frequentitemsets often have common extended items (i.e, item
the above join operation can be performed to derive candidatéD plus contextual position), some fraction of extended items
X atthe final pasé = RuleLen. in subsequent itemsets are chosen from the previous one gen-

As X is frequent, any subset ok is also frequent. erated. We use an exponentially distributed random variable
Thus, we can find two frequent subsets = {A4, (z1), with mean equal to theorrelation leveko decide this fraction

v Ay (®0), Ady i (Tag1), - Agy (@)} in Ly and Xo = for each itemset. The remaining extended items are picked at

{Adyiy (Tat1)s s Ay (1), Adyyy (Tp1)s - -5 Ay, (20)} random. After generating all the extended items for a frequent

in L, _,. Sinced,., > d, . d, > d, by subtract- itemset, we normallze.the generated itemset by subtractl_n_g its

ing d from each contextual positioniof items ik, and m|tnh|mal c;ontextual point value from each contextual position
in this set.

keeping the relative positions unchanged, the itemMiSet=
{Aduii—a(®ag1), .., Ady—al(wp), Ay —a(Tos1), - - -

Ag,, —a(x-)} remains frequent as well. Hereby, there exist
two frequent itemsetd/ = X;,V = X/, in respective
frequent setd,, and L,._,, from which candidateX can be
obtained and detected by the joint mining algorithm. O

After generating the sdt of potentially frequent itemsets,
we then generate transactions in the database. Each transaction
is assigned a series of potentially frequent itemsets. However,
upon the generation of one transaction, we need to consider
a list of consecutive ones starting from this transaction, as
items in a frequent extended itemset may span across different
transactions. For example, after selecting the frequent item-
set{Ay(a), A1(b), A2(c)} for current transactiom..(¢), we
7 Performance study should assign itemto¢, itemb to its next transactioti which

is one unitaway, i.eA..1(t'), and itene to the transaction at

In this section, we report our performance study on the twothe pointA. ». If the frequent itemset picked on hand does not
different mining algorithms. As the aim of experimental evalu- fit in the current or any one of its successive transactions, this
ation in this study is to assess and gain an overall feeling aboutemset is put in these transactions anyway in half the cases,
the fundamental performance of the two proposed methodsand the itemset enters anfit queue for the next transaction
our experiments here focus on their basic behavior’s investigathe rest of the cases. Each time, we pick itemsets from this
tion. Detailed comparison and analysis of specific heuristicgyueue first according to the first-in-first-out principle. Only
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Table 8. Parameters

plate model for multidimensional inter-transactional association rules

Parameter Meaning Setting
Data generation

|D| Number of transactions 20k - 100k

T Average size of the transactions 4-8

|MT)| Maximum size of the transactions 8-12

|L| Number of potentially frequent itemsets 2000

|| Average size of the potentially frequent itemsets 5-7

|M1I| Maximum size of the potentially frequentitemsets 8- 10

N Number of items 800 - 1600

W Window size 4-8
Template Generation

Instance Num Number of template instances 3

RuleLen Length of rules 4,5

Sel f Common_Portion
contextual positionwithin itself

CrossCommon_Portion  Portion of template instances with com

Portion of template instance with common relative

20%, 40%, 50%

mon relative  20%, 40%, 50%

contextual positionamongtemplate instances

when the queue is empty, do we perform random selectiorPart Il ={ Ag}. As a result, the first template instance is com-

from the setL.

7.2 Generation of template instances

prised of contextual positiond,, As, A4, A5, Ag. TO gener-

ate the second template instance, its Part I, reflecting the com-
mon relative positions among template instances, is obtained
by selectingl; = 3 contextual positions from the first tem-
plate instance. Assume the selected positiongared,, As

For generality, we generate various template instances using@d+4, = —A; , Thus, Part | 5{A;, A3, A4}, Part Il and
list of parameters shown in Table 8. To model the phenomenofPart Il of the second template instance are generated in the
that some common relative contextual positions may exissame way as of the first template instance. Suppose Part Il =
within or among different template instances, we divide each{44} and Part Il ={A7}. We haveA, A3, Ay, Ay, A7 for

template instance into three parts, containing,, andis; ex-
tended items, respectively; (+ lo + I3 = RuleLen). Part

the second template instance, whichAg, As, As, As, Ag
after normalization.

I, whose contextual positions are directly selected from the

previous template instance except e\, difference, shows

the common relative positions among template instances, that-3 Experiments on synthetic data

is, i = [CrossCommon_Portion x RuleLen]|. For the

first template instance, we generate this part randomly. Paftour sets of experiments were performed to investigate the

Il, whose contextual positions are selected from within the
template instance’s Part | except i, difference, shows

performance of theseparatealgorithm andjoint algorithm,
with the emphasis on their basic behavior, scale-up proper-

the common relative positions within a template instance, thaties, and some key performance influential factors, including

is,ly = [Sel fCommon_Portion x 11 ]. Contextual points in
Part 1l are chosen randomly with = RuleLen — Iy — Is.

contextual scope and template length. The machine used for
the experiments is a Sun Ultra Sparc Workstation with a CPU

The maximum contextual scope within each template instancelock rate of 164 MHz and 64 MB main memory.

is bounded by the window siZé’.

For example, suppose the length of the two tem-
plate instances to be generated is 5 (i.ByleLen=5,
InstanceNum=2), and the window siz&=8. Let
CrossCommon_Portion = 50% and
Sel f Common_Portion = 30%, we have
I [CrossCommon_Portion x RuleLen] = [50% x
5] = 3,1y = [SelfCommon_Portionx 1] = [30% x 3] =
1, andl; = RuleLen —1; —l = 5—3 —1 = 1. For the first
template instance, it§ =3 contextual positions in Part | are
randomly picked up fronfD, W], so is thds=1 contextual po-
sition in Part Ill. Assume Part | $Aq, Ay, A4} and Part Il =
{As5}. Thel, = 1 contextual positionin Partllis selected from
Part I, except fort A, difference determined randomly. Let
+A;, be+ A, and the selected position from Part s, thus

7.3.1 Basic experiments

The first set of experiments studies the basic be-
havior of the algorithms when the minimum sup-
port changes. Three template instances of length 4
(InstanceNum=3, RuleLen=4) are generated based on
CrossCommon/Sel f Common_Portion = 50%, denoting
the portion of template instances that have common relative
contextual positions among/within the template instances. The
speeding parametdt Limit is 3 through the whole experi-
ments.

As shown in Fig. 5, when the minimum support increases,
the execution times of both algorithms decrease because of
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Table 9. Comparison okeparateandjoint mining plans

separate |ICt| =7 |IC3| =7 |C5[ =9
mining plan W-Len(CY) =7 W-Len(C3) =7 W-Len(C3)=7
joint ICil=5 |C3| =5 |C3] =2
mining plan W-Len(C7) =6 W-Len(C3)=6 W-Len(C3) =6

the reduction in the number of candidate and frequent Figure 6a shows howeparateand joint behave as the
itemsetsL;, at each pass. Throughout the experimejaisit number of items in a database increases from 800 to 1,600. As
is always superior oveseparate For example, in Fig. 5(b), expected, the executiontimes of both algorithmsincrease. This
when minimum support is 0.25%, the mining timesapa-  is because more items lead to more candidates to be counted,
rate is around 434s, while that ¢bint is 326s, about 33% especially at the first two passes, resulting in more time for
more time required. This is not surprising if we look at their searching the database before finding frequent itemsets.
mining plans shown in Table 9. The template instances gen- In addition, when we increase the number of transac-

erated for this test arefy(x), Ag(x) = Ai(x), Ag(x)", tions from 20K to 100K, both algorithms take longer time
“Ap(x), A1(x) = Aq(x), Ag(x)”, and to scan the database and count candidate itemsets. As shown
“Ao(x), Aa(x) = As(x), *As(x)". The joint algorithm gen-  in Fig. 6(b), their execution times scale quite linearly.

erates its target candidates through Finally, we investigate the scale-up as we increase the av-

As()} erage transaction size from 4 to 8. From the result presented in
Fig. 6(c), we observe that for both algorithms, the more items

Ay(x)} per transaction, the more time needed to process. This is due

Ai(%)} = to several reasons. First, given a minimum support and a set

As ()}

Ai ()}

of items, when the average transaction size is large, there are

more frequent 1l-itemsets generated, and hence more candi-

= date 2-itemsets need to be counted. The construction of the

{Ao(%), A1 (%), Ar(x), Aa(x)} hash table fo’; at pass 1 also takes Ionger time. Moreover,
the time needed to scan every transaction of the database be-
where for simplicity; andyj in U(;) &(;) V denote the ithand  comes longer, resulting in higher processing costs. For exam-
jth extended item i/ andV/, respectively. ple, at average transaction size 5, the execution timgsiruf

From Table 9, we can see that at each passjainéal-  andseparateare 194s and 243s, respectively, but at average

gorithm counts less candidates which are of smaller contextransaction size 8, they increase to 338s and 4355, nearly 74%
tual scopes than theeparatealgorithm. As a result, lots of and 79% increment each.

time can be saved from searching the database. From this

preliminary experiments, we note that strategies aiming at

eliminating candidates, especially those with large contextuay 3 3 Further experiments
scopes, can yield significant performance benefits in mining

inter-transactional associations.

Our last experiment on synthetic database is to study the im-
pact of contextual scope (window size) and rule length on the
7.3.2 Scale-up experiments performance of mining algorithms. The experiment was con-
ducted under two different templates shown in Table 10. Each
The second set of experiments is designed to study scale-upmplate implies three template instances. The length and con-
properties of the algorithms. textual scope of Template | are both 4, while the length and
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Table 10.Template instances for further experiment

Instance Template | (RuleLen=4, window size=4) Template Il (RuleLen=5, window size=6)

No.1 Ap(x), Ao(x) = As(x), Az(*) Ap(x), Az(x) = As(x), As(*), As(*)
No.2 Ap(x), Az(*) = As(x), Aa(*) Ap(x), Ao(x) = Ag(x), Ax(*), Aa(x)
No.3 Ao (), Ax(x) = Aa(x), Az(*) Ao(), Aa(x) = Au(x), As(x), As(*)
separate |Cﬂ :5a|02*‘ :57‘C§| =6 |Cﬂ :7a|05‘ :77‘C§| :13a|CZ‘ =9
plan W-Len(CT) =5, W-Len(C3) =5 W-Len(CY) =7, W-Len(C3) =7
W-Len(C3) =5 W-Len(C3) =7, W-Len(C;) =7
joint ICT| =4,]C3| =4,|C5] =2 ICT]=3,]1C3] =3,|C5] =2
plan W-Len(CT) =4, W-Len(C5) = 4 W-Len(CT) =4, W-Len(C5) = 4
W-Len(C3) =4 W-Len(C3) =4

contextual scope of Template Il are 5 and 6, respectively. Figgeneration steps. From this experiment, we note that careful

ure 7 presents the result of the experiment. selection of a search space beforehand is quite important to
Intuitively, the mining time under Template Il should be the inter-transactional association mining performance.

more than that under Template I, since the itemsets indicated

in Template Il span more transactions and tend to be longer. In

fact, the results ofeparatealgorithm do justify such specula- 7.4 Experiments on real data

tion. Table 10 shows the candidate number and the maximal

contextual scope of candidates to be counted at each pass undgjtest the applicability of inter-transactional association rules,
two templates. However, the behaviorjoint is surprisingly e run the algorithms against two data sets collected from Sin-
contrary. Looking at its search space, we find foét ac-  gapore Stock Exchange (SSE). One is the WINNER set that
tually counts less candidates each timgjdining necessary  contains the stocks whose closing prices are 3% more than
itemsets, demonstrating the effectivenespifing operation  the previous closing prices; and another is the LOSER set that
and speedingtechniques in the candidate identification and contains other stocks. For each data set, we have 250 records
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sentsloans and debentures, and BothS andOU T represent
banking market. This rule reveals the closely causal relation-
ships among four major stocks in Singapore. As known, the
land properties in Singapore play an important role in the na-
tional economic development, and therefore their decaying
inevitably leads to a bad performance of loans, debentures,
and banking. Such a discovered rule reveals some of the char-

250 - 1

Time (sec)

200 ] acteristics of Singapore’s economic structures.
150 | 1 Since the WINNER data set is small, we do not have rules
100 | SEPARATE Template Il <— with large support. However, we did find some interesting
50 | RN Tommme | o rules such as

o ‘ JOINTTempiate | - “Ao(HAISUNWT), A (KIMENGWT) =

01 O hnimum Support (o4} 028 Ay(HAISUNWT), As(HAISUNWT)".

Thatis, if HAISUN Warrant stock and KIMENG Warrant stock
T5-15-N1000-D100k (belonging to loans and bond sectors, respectively) go up on

successive days, HAISUN Warrant will keep going up for the

Fig. 7. Effects of window size and rule length (InstanceNum=3, next 2 days.

KLimit=3) Our study using stock movement data is on-going. The
results obtained so far indicate that, with inter-transactional
association rules, we can discover more comprehensive and

corresponding to 250 trading days in 1996 (i/85250). Al- interesting knowledge, arjdint algorithm can achieve better

though there are a few hundred stocks in SSE, we only havperformance thaseparatealgorithm regardless of a large or
complete data for 84 stocks (i.&V=84). Observing that quite small average transaction size.

a number of traders are likely to know recent stock behav-

ior based on the information in the past few days, we use the

template instanceAy (), A, (x) = As(x), As(x)" as our 8 Related work

mining guidance.

We like to test with these two data sets, because the majofhe presented multidimensional inter-transactional associa-
trend for SSE in 1996 was down side, leading to a pretty largdion rules provide a more general view of association rule and
average transaction size (more than 70) in the LOSER dataequential pattern mining problems [34,35,16,7,8]. First, all
set, and a small average transaction size (less than 10) in thgrevious work treats data as a sequence of records in one di-
WINNER data set by contrast. Figures 8 and 9 show the expemension, and there are no discussions on a multidimensional
imental results on these two different data sets. The suppoxtontext. We believe that a large number of applications exist
threshold set for the LOSER data set is big enough (98%) ashere association is only meaningful when transaction/event
each transaction (trading day) contains lots of items (droppingds viewed along more than one dimension simultaneously, for
stocks), while the support threshold set for the WINNER dataexample, in geographical applications. Second, even for one
set is small (1.5%) due to the much less items (rising stocksjlimensional data, there are differences between the previous
per transaction (trading day). work and the one reported in this paper.

Different from theseparatealgorithm which generates
candidate] Ag(x), A1 (%), Aa(x), Az(x)} through
{AO(*)> Al(*)a AQ(*)} and{AO(*)7 Al(*)a AB(*)}!jOint al-

Traditional association rule mining. The original associ-
ation rule mining proposed by Agrawetl. al.[1] is apparently

) . 2 a special case of the multi-dimensional inter-transactional as-
gorithm directlyjoins two { Ap(x), Ay (x), A2(x)}. Table 11 sociation rule mining: if we omit the dimensional attributes

fﬁgﬁ?&ﬁ%%ﬁer?tg:i'tnh"r]ng;ﬁgs‘siorgﬁgsn?gsz'ghset?hzg' t?\'ein the transactions, and set the window size to one, the multi-
J g alg ys Sp dimensional inter-transactional association rule mining will

separate mining algorithm on Pass 1, 2, and 3. This is becaus L . e .
the former needs to count much less number of candidatesegralole to intra-transactional association rule mining.

and the search space at each pass is smaller than the latter. At Sequential pattern discovery.Agrawalet. al.introduced
the final pass 4, the separate algorithm takes less time astlhe problem of mining sequential patterns from transaction
has pruned out some candidates frétn However, this is at  databases where each record contains items bought by a par-
the cost of spending comparatively more time on the first fewticular customer, in different transactions during a period of
passes in counting all possible subsets of 4-itemsets, leadingme [5]. One sequential pattern example88% of customers
to a higher overall mining cost. bought shoeafter they bought shirt§ For mining sequential

As the LOSER set has larger average transaction size thagpatterns, transactions of each customer ordered by transaction-
the WINNER one, both algorithms need more time in mak-time are organized into one record. The problem of sequential
ing hash table fo€’,, thus, their execution times at pass 1 are pattern mining was further generalized to allow items to be
longer. From the LOSER data set, one example rule that corpresent in a set of transactions whose transaction-times are
formstothetemplateisAo(UOL), A1 (SIA) = Ay(DBS), within a user-specified time window [49], Despite this, se-
A3(OUT)". It says that, if UOL goes down and SIA goes quential pattern mining focuses @uccessive/precederg-
down the following day, DBS and OUT will go down on lationships of items. On the other hand, we are interested in
the second and third day with confidence more than 99%finding all associations across a set of transactions within all
Here,UOL stock represents land markét/ A stock repre-  possiblydifferent ranges. This part of contextual informa-
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Table 11.Template instances for the experiments on real-data

Template instance:Ag(x), Ay (x ):> Az (x), As(x)

separate {Ao(x)} {Ao(x), A1)} {Ao(x), Ai(x), A2(x)}  {Ao(¥), Ai(x), A2(x), As(¥)}
plan {A:()} {Ao(x), A2(0)}  {Ao(x), A ( ), As(*)}

{A2(%)} {Ao(x), As(+)}

{As(+)}

|Cil =4 |C31 =3 IC5 =2 ICil=1

W-Len(C7) =4 W-Len(C3) =4 W-Len(C3) =14 W-Len(Ci) =4
joint {Ao(%)} {Ao(), A1()}  {Ao(), A1(x), A2(x)}  {Ao(¥), Ar(+), A2(x), As(x)}
plan GO {Ao(x), A2(x)}

{A2(4)}

ICil =3 |C3] =2 IC5] =1 ICil =1

W-Len(C7) =3 W-Len(C3) =3 W-Len(C3) =3 W-Len(Ci) =4

tion can be explicitly captured within the inter-transactional of more general episode rules with arbitrary time bounds from
association rule framework. a large sequence remains an open problem.

Episode rule discovery. In episode rules presented by Rule discovery from time-series data. Das et al. pro-
Mannila et al. [34,35], the temporal relationship among eventgposed adaptive methods for finding rules from the pre-
is expressed roughly adf ‘episodeP has a minimal occur- processed data [16]. First, a time series is converted into a
rence atintervalt, t'] witht’ — ¢ < V, then episod€) occurs  discrete representation. Based on the discretized sequence,
atintervallt, "] for some” suchthat” —t < W”, wherethe temporal patterns can be detected using previous rule-finding
time bounds involved are constrained to have the same starglgorithms (such as the episode rule methods). Although this
ing timet. As mentioned by the authors, only certain types of work need not define beforehand what patterns to be used, the
episodes with predefined predicates and time bounds are easityles they studied are rather simple and limited to the form
detected using their mining algorithms. The efficient mining of “if A occurs, then B occurs within time TAlthough the
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authors mentioned that the rules can be extended to a mof@evelopment of efficient discovery algorithms for 2- and

complex form, liked; A...A Ay, [V] = B [W], statingif A,
and... and A, occur withinV units of time, theB occurs
within timeW, the rules are still limited to two windows only.

Temporal relationship mining. Compared to
episode sequences and Das et al.’s rules, Bettini et al. looked

dimensional inter-transactional association rules is another fu-
ture work we are working towards. It might also be interesting
to study the multidimensional inter-transactional association
rule mining in distributed and parallel environments.

for more complex event sequences from time-series data, evefcknowledgementsThe authors would like to thank the referees
using different time granularities [7,8]. However, their focus is and editors-in-chief for their insightful comments which have greatly
on event sequences. Neither definitions nor mining algorithmdelped to improve the paper.

regarding the rules were discussed in the context. Itis obvious
that rules above certain confidence threshold can show the

connections between events more clearly than event sequencBeferences

alone [35].

1. Agrawal R, Imielinski T, Swami A (1993) Mining association

Time-series analysis.Time-series analysis and forecast-
ing has been an active research topic in statistics. The main
purpose is to understand and model the stochastic mechanism

that gives rise to an observed series, or to forecast future val-.

ues of a series based on the history of that series [56,14].
DeCoste proposed a technique based on linear regression and
neural network for automatic detection of anomalies in sensor

data [17]. Recently, Yet. al presented a fast method called 3.

MUSCLES to analyze co-evolving time sequences to enable

estimation of missing/delayed/future values and outlier detec- 4.

tion [58]. The main theme of the analysis performed in this
area is different from mining rules from a large amount of data
under multidimensional contexts.

Similarity retrieval from sequences. Most of sequence-

related work in the database community concerns similarity 6.

search and querying, i.e., finding similar sequences that match

a given pattern in some error distances, or searching all pairs7.

of similar sequences [2,30,15,54]. Various approaches have
been suggested including using the discrete Fourier transform,
interpolation approximation, or defining some shape querying
languages [29). Issues such as how to detect patterns effi-

ciently from a huge database of sequences are not the focus i$-

this body of work.

We believe that discovering inter-transactional association
rules would reveal more comprehensive and useful informa-
tion which in turn can be used in broad applications for anal-
ysis, prediction, and decision making.

10.

9 Conclusion

Mining inter-transactional association rules is a computation-

ally intensive problem, requiring much more search effort11-

compared to the traditional association rule mining. In or-
der to make such association rules truly practical and ex-
tensible, in this study, we propose a template model to hel
users specify the interesting rules to be mined. Several opti-
mization techniques are devised to speed up the discovery of
inter-transactional association rules. Our performance stud
on both synthetic and real-life data sets reveal that with inter-
transactional association rules, we can discover more compre-
hensive knowledge; and careful selection of mining plans to

reduce the search space is critical to the performance of sucty,

extended association rule mining.

We plan to extend this work in several directions. Besides) 5,

context constraints, we will also consider pushing item con-
straints into the inter-transactional association mining process.
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