Abstract
The typical user interaction with a database system is through queries. However, many times users do not have a clear understanding of their information needs or the exact content of the database. In this paper, we propose assisting users in database exploration by recommending to them additional items, called Ymal (“You May Also Like”) results, that, although not part of the result of their original query, appear to be highly related to it. Such items are computed based on the most interesting sets of attribute values, called faSets, that appear in the result of the original query. The interestingness of a faSet is defined based on its frequency in the query result and in the database. Database frequency estimations rely on a novel approach of maintaining a set of representative rare faSets. We have implemented our approach and report results regarding both its performance and its usefulness.





















Similar content being viewed by others
References
IMDb. http://www.imdb.com
Yahoo!Auto. http://autos.yahoo.com
Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17(6), 734–749 (2005)
Agrawal, S., Chaudhuri, S., Das, G., Gionis, A.: Automated ranking of database query results. In: CIDR (2003)
Akbarnejad, J., Chatzopoulou, G., Eirinaki, M., Koshy, S., Mittal, S., On, D., Polyzotis, N., Varman, J.S.V.: Sql querie recommendations. PVLDB 3(2), 1597–1600 (2010)
Bishop, Y.M., Fienberg, S.E., Holland, P.W.: Discrete Multivariate Analysis: Theory and Practice. Springer, New York (2007)
Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun. ACM 13(7), 422–426 (1970)
Breese, J.S., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms for collaborative filtering. In: UAI (1998)
Calders, T., Goethals, B.: Non-derivable itemset mining. Data Min. Knowl. Discov. 14(1), 171–206 (2007)
Chatzopoulou, G., Eirinaki, M., Polyzotis, N.: Query recommendations for interactive database exploration. In: SSDBM (2009)
Chaudhuri, S., Das, G., Hristidis, V., Weikum, G.: Probabilistic information retrieval approach for ranking of database query results. ACM Trans. Database Syst. 31(3), 1134–1168 (2006)
Cheng, J., Ke, Y., Ng, W.: Delta-tolerance closed frequent itemsets. In: ICDM (2006)
Drosou, M., Pitoura, E.: Redrive: result-driven database exploration through recommendations. In: CIKM (2011)
Garcia-Molina, H., Koutrika, G., Parameswaran, A.G.: Information seeking: convergence of search, recommendations, and advertising. Commun. ACM 54(11), 121–130 (2011)
Garg, S., Ramamritham, K., Chakrabarti, S.: Web-cam: monitoring the dynamic web to respond to continual queries. In: SIGMOD (2004)
Giacometti, A., Marcel, P., Negre, E., Soulet, A.: Query recommendations for olap discovery-driven analysis. IJDWM 7(2), 1–25 (2011)
Gunopulos, D., Khardon, R., Mannila, H., Saluja, S., Toivonen, H., Sharm, R.S.: Discovering all most specific sentences. ACM Trans. Database Syst. 28(2), 140–174 (2003)
Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann, San Francisco (2000)
Kashyap, A., Hristidis, V., Petropoulos, M.: Facetor: cost-driven exploration of faceted query results. In: CIKM (2010)
Khoussainova, N., Kwon, Y., Balazinska, M., Suciu, D.: Snipsuggest: context-aware autocompletion for sql. PVLDB 4(1), 22–33 (2010)
Konstan, J.A., Miller, B.N., Maltz, D., Herlocker, J.L., Gordon, L.R., Riedl, J.: Grouplens: applying collaborative filtering to usenet news. Commun. ACM 40(3), 77–87 (1997)
Koudas, N., Li, C., Tung, A.K.H., Vernica, R.: Relaxing join and selection queries. In: VLDB (2006)
Koutrika, G., Bercovitz, B., Garcia-Molina, H.: Flexrecs: expressing and combining flexible recommendations. In: SIGMOD (2009)
Lee, Y.K., Kim, W.Y., Cai, Y.D., Han, J.: Comine: efficient mining of correlated patterns. In: ICDM (2003)
Mooney, R.J., Roy, L.: Content-based book recommending using learning for text categorization. CoRR cs.DL/9902011 (1999)
Omiecinski, E.: Alternative interest measures for mining associations in databases. IEEE Trans. Knowl. Data Eng. 15(1), 57–69 (2003)
Palmisano, C., Tuzhilin, A., Gorgoglione, M.: Using context to improve predictive modeling of customers in personalization applications. IEEE Trans. Knowl. Data Eng. 20(11), 1535–1549 (2008)
Pazzani, M.J., Billsus, D.: Learning and revising user profiles: the identification of interesting web sites. Mach. Learn. 27(3), 313–331 (1997)
Roy, S.B., Wang, H., Das, G., Nambiar, U., Mohania, M.K.: Minimum-effort driven dynamic faceted search in structured databases. In: CIKM (2008)
Sarawagi, S., Agrawal, R., Megiddo, N.: Discovery-driven exploration of olap data cubes. In: EDBT (1998)
Sarkas, N., Bansal, N., Das, G., Koudas, N.: Measure-driven keyword-query expansion. PVLDB 2(1), 121–132 (2009)
Sarma, A.D., Parameswaran, A.G., Garcia-Molina, H., Widom, J.: Synthesizing view definitions from data. In: ICDT (2010)
Simitsis, A., Koutrika, G., Ioannidis, Y.E.: Précis: from unstructured keywords as queries to structured databases as answers. VLDB J. 17(1), 117–149 (2008)
Srikant, R., Agrawal, R.: Mining quantitative association rules in large relational tables. In: SIGMOD (1996)
Stefanidis, K., Drosou, M., Pitoura, E.: “you may also like” results in relational databases. In: PersDB (2009)
Szathmary, L., Napoli, A., Valtchev, P.: Towards rare itemset mining. In: ICTAI (1) (2007)
Tan, P.N., Kumar, V., Srivastava, J.: Selecting the right interestingness measure for association patterns. In: KDD (2002)
Tan, P.N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Addison Wesley, Boston (2005)
Tintarev, N., Masthoff, J.: Designing and evaluating explanations for recommender systems. In: Recommender Systems Handbook (2011)
Tran, Q.T., Chan, C.Y.: How to conquer why-not questions. In: SIGMOD (2010)
Tran, Q.T., Chan, C.Y., Parthasarathy, S.: Query by output. In: SIGMOD (2009)
Acknowledgments
The research of the first author has been co-financed by the European Union (ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the NSRF - Research Funding Program: Heracleitus II. The research of the second author has been co-financed by the European Union (ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the NSRF - Research Funding Program: Thales. Investing in knowledge society through the European Social Fund EICOS project.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Drosou, M., Pitoura, E. YmalDB: exploring relational databases via result-driven recommendations. The VLDB Journal 22, 849–874 (2013). https://doi.org/10.1007/s00778-013-0311-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00778-013-0311-4