Abstract
Social media recommendation has attracted great attention due to its wide applications in online advertisement and entertainment, etc. Since contexts highly affect social user preferences, great effort has been put into context-aware recommendation in recent years. However, existing techniques cannot capture the optimal context information that is most discriminative and compact from a large number of available features flexibly for effective and efficient context-aware social recommendation. To address this issue, we propose a generic framework for context-aware recommendation in shared communities, which exploits the characteristics of media content and contexts. Specifically, we first propose a novel approach based on the correlation between a feature and a group of other ones for selecting the optimal features used in recommendation, which fully removes the redundancy. Then, we propose a graph-based model called content–context interaction graph, by analysing the metadata content and social contexts, and the interaction between attributes. Finally, we design hash-based index over Apache Storm for organizing and searching the media database in real time. Extensive experiments have been conducted over large real media collections to prove the high effectiveness and efficiency of our proposed framework.
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00778-018-0524-7/MediaObjects/778_2018_524_Fig1_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00778-018-0524-7/MediaObjects/778_2018_524_Fig2_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00778-018-0524-7/MediaObjects/778_2018_524_Fig3_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00778-018-0524-7/MediaObjects/778_2018_524_Fig4_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00778-018-0524-7/MediaObjects/778_2018_524_Fig5_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00778-018-0524-7/MediaObjects/778_2018_524_Fig6_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00778-018-0524-7/MediaObjects/778_2018_524_Fig7_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00778-018-0524-7/MediaObjects/778_2018_524_Fig8_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00778-018-0524-7/MediaObjects/778_2018_524_Fig9_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00778-018-0524-7/MediaObjects/778_2018_524_Fig10_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00778-018-0524-7/MediaObjects/778_2018_524_Fig11_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00778-018-0524-7/MediaObjects/778_2018_524_Fig12_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00778-018-0524-7/MediaObjects/778_2018_524_Fig13_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00778-018-0524-7/MediaObjects/778_2018_524_Fig14_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00778-018-0524-7/MediaObjects/778_2018_524_Fig15_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00778-018-0524-7/MediaObjects/778_2018_524_Fig16_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00778-018-0524-7/MediaObjects/778_2018_524_Fig17_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00778-018-0524-7/MediaObjects/778_2018_524_Fig18_HTML.png)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1007%2Fs00778-018-0524-7/MediaObjects/778_2018_524_Fig19_HTML.png)
Similar content being viewed by others
References
http://tubularinsights.com/youtube-changes-33-percent-a-year/. Accessed 30 Nov 2015
Jiang, M., Cui, P., Liu, R., Yang, Q., Wang, F., Zhu, W., Yang, S.: Social contextual recommendation. In: CIKM. ACM, pp. 45–54 (2012)
Huang, Y., Cui, B., Jiang, J., Hong, K., Zhang, W., Xie, Y.: Real-time video recommendation exploration. In: SIGMOD, pp. 35–46 (2016)
Kumar, R., Verma, B.K., Rastogi, S.S.: Context-aware social popularity based recommender system. IJCA 92(2), 37–42 (2014)
Yang, X., Steck, H., Liu, Y.: Circle-based recommendation in online social networks. In: KDD, pp. 1267–1275 (2012)
Yin, H., Cui, B., Chen, L., Hu, Z., Huang, Z.: A temporal context-aware model for user behavior modeling in social media systems. In: SIGMOD, pp. 1543–1554 (2014)
Akther, A., Alam, K.M., Kim, H.N., Saddik, A.E.: Social network and user context assisted personalization for recommender systems. In: IIT, pp. 95–100 (2012)
Zhou, X., Chen, L., Zhang, Y., Cao, L., Huang, G., Wang, C.: Online video recommendation in sharing community. In: SIGMOD. ACM, pp. 1645–1656 (2015)
Zhou, X., Chen, L., Zhang, Y., Qin, D., Cao, L., Huang, G., Wang, C.: Enhancing online video recommendation using social user interactions. VLDB J. 26(5), 637–656 (2017)
Cui, B., Tung, A.K.H., Zhang, C., Zhao, Z.: Multiple feature fusion for social media applications. In: SIGMOD, pp. 435–446 (2010)
Meiri, R., Zahavi, J.: Using simulated annealing to optimize the feature selection problem in marketing applications. EJOR 171(3), 842–858 (2006)
Broadhurst, D., Goodacre, R., Jones, A., Rowland, J., Kell, D.B.: Genetic algorithms as a method for variable selection in multiple linear regression and partial least squares regression, with applications to pyrolysis mass spectrometry. Anal. Chim. Acta 348(1), 71–86 (1997)
Kabir, M., Islam, M., Murase, K.: A new wrapper feature selection approach using neural network. Neurocomputing 73(16), 3273–3283 (2010)
Wolf, L., Shashua, A.: Feature selection for unsupervised and supervised inference: the emergence of sparsity in a weight-based approach. JMLR 6, 1855–1887 (2005)
Wang, X., Wang, Y., Wang, L.: Improving fuzzy c-means clustering based on feature-weight learning. Pattern Recogn. Lett. 25(10), 1123–1132 (2004)
Wang, J., Wu, L., Kong, J., Li, Y., Zhang, B.: Maximum weight and minimum redundancy: a novel framework for feature subset selection. Pattern Recogn. 46(6), 1616–1627 (2013)
Song, Q., Ni, J., Wang, G.: A fast clustering-based feature subset selection algorithm for high-dimensional data. TKDE 25(1), 1–14 (2013)
Yu, L., Liu, H.: Feature selection for high-dimensional data: A fast correlation-based filter solution. In: ICML, vol. 3, pp. 856–863 (2003)
Yu, L., Liu, H.: Efficient feature selection via analysis of relevance and redundancy. JMLR 5, 1205–1224 (2004)
Luo, H., Fan, J., Keim, D.A.: Personalized news video recommendation. In: ACM MM, pp. 1001–1002 (2008)
Yang, B., Mei, T., Hua, X., Yang, L., Yang, S., Li, M.: Online video recommendation based on multimodal fusion and relevance feedback. In: CIVR, pp. 73–80 (2007)
Zhu, Q., Shyu, M.L., Wang, H.: Videotopic: content-based video recommendation using a topic model. In: ISM, pp. 219–222 (2013)
Li, L., Wang, D., Li, T., Knox, D., Padmanabhan, B.: SCENE: a scalable two-stage personalized news recommendation system. In: SIGIR, pp. 125–134 (2011)
Rendle, S.: Factorization machines. In: ICDM, pp. 995–1000 (2010)
Cai, D., He, X., Han, J.: Tensor space model for document analysis. In: SIGIR. ACM, pp. 625–626 (2006)
Liu, N., Zhang, B., Yan, J., Chen, Z., Liu, W., Bai, F., Chien, L.: Text representation: from vector to tensor. In: ICDM, pp. 4–10 (2005)
Maulik, U., Bandyopadhyay, S.: Performance evaluation of some clustering algorithms and validity indices. TPAMI 24(12), 1650–1654 (2002)
Symeonidis, P., Nanopoulos, A., Manolopoulos, Y.: Tag recommendations based on tensor dimensionality reduction. In: RecSys. ACM, pp. 43–50 (2008)
Symeonidis, P.: User recommendations based on tensor dimensionality reduction. In: Artificial Intelligence Applications and Innovations III. Springer, pp. 331–340 (2009)
Lathauwer, L.D., Moor, B.D., Vandewalle, J.: A multilinear singular value decomposition. SIMAX 21(4), 1253–1278 (2000)
Zhou, X., Chen, L., Zhou, X.: Structure tensor series-based large scale near-duplicate video retrieval. IEEE Trans. Multimed. 14(4), 1220–1233 (2012)
https://en.wikipedia.org/wiki/Great-circle_distance. Accessed 14 Sept 2018
http://www.reelseo.com/youtube-300-hours/. Accessed 21 Nov 2014
Marzuki, Z., Ahmad, F.: Data mining discretization methods and performances. Lung 3(32), 57 (2012)
Haindl, M., Somol, P., Ververidis, D., Kotropoulos, C.: Feature selection based on mutual correlation. In: Progress in Pattern Recognition, Image Analysis and Applications. Springer, pp. 569–577 (2006)
Chou, T.-S., Yen, K., Luo, J., Pissinou, N., Makki, K.: Correlation-based feature selection for intrusion detection design. In: MILCOM. IEEE, pp. 1–7 (2007)
Tao, Y., Yi, K., Sheng, C., Kalnis, P.: Quality and efficiency in high dimensional nearest neighbor search. In: SIGMOD, pp. 563–576 (2009)
Faloutsos, C., Lin, K.-I.: FastMap: A fast algorithm for indexing, data-mining and visualization of traditional and multimedia datasets. In: ACM, vol. 24(2) (1995)
Schweikardt, N.: One-Pass Algorithm, pp. 1948–1949. Springer, Boston, MA (2009)
https://docs.google.com/spreadsheets/u/1/d/1s0okSI6Tcj4REgovHrBRshrjULgQU14SF29Xv1TzLPqhU4/pub?gid=1HrB. Accessed 1 Aug 2008
Nowok, B., Raab, G.M., Dibben, C.: synthpop: Bespoke creation of synthetic data in R. J. Stat. Softw. 74, 1–26 (2015)
Debnath, S., Ganguly, N., Mitra, P.: Feature weighting in content based recommendation system using social network analysis. In: WWW, pp. 1041–1042 (2008)
http://storm.apache.org/releases/1.0.0/Concepts.html. Accessed 12 Apr 2016
https://trends.google.com/trends/explore?date=2012-01-01%202016-12-31&gprop=youtube&q=music,TV,art,sport,pet. Accessed 31 Dec 2016
Acknowledgements
The work is partially supported by ARC project DP140100841, the Hong Kong RGC GRF Project 16207617, the National Science Foundation of China (NSFC) under Grants (No. 61729201, No.61332013, No.61572139), Science and Technology Planning Project of Guangdong Province, China, No. 2015B010110006, Huawei Co.Ltd Collaboration Project, YBCB2009041-45, Hong Kong ITC ITF grants ITS/391/15FX and ITS/212/16FP, and Microsoft Research Asia Collaborative Research Grant. The authors would like to thank Wenqiang Shao, Yang Li, Sheng Wang, and Liangjun Song for useful discussions.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zhou, X., Qin, D., Chen, L. et al. Real-time context-aware social media recommendation. The VLDB Journal 28, 197–219 (2019). https://doi.org/10.1007/s00778-018-0524-7
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00778-018-0524-7