Abstract
Many real-world relationships between entities can be modeled as temporal graphs, where each edge is associated with a timestamp or a time interval representing its occurrence. The k-core is a fundamental model used to capture cohesive subgraphs in a simple graph and have drawn much research attention over the last decade. Despite widespread research, none of the existing works support the efficient querying of historical k-cores in temporal graphs. In this paper, given an integer k and a time window, we study the problem of computing all the nodes belonging to the k-core in the graph snapshot over the time window. We propose an index-based solution and several pruning strategies to reduce the index size. We design a novel algorithm to construct this index, whose running time is linear to the final index size. We also propose algorithms to maintain our index given the continuous arrival of new edges. Lastly, we conducted extensive experiments on several real-world temporal graphs to show the high effectiveness of our index-based solution.




































Similar content being viewed by others
References
Akiba, T., Iwata, Y., Yoshida, Y.: Dynamic and historical shortest-path distance queries on large evolving networks by pruned landmark labeling. In: WWW, pp. 237–248 (2014)
Aksu, H., Canim, M., Chang, Y.-C., Korpeoglu, I., Ulusoy, Ö.: Distributed \( k \)-core view materialization and maintenance for large dynamic graphs. TKDE 26(10), 2439–2452 (2014)
Alvarez-Hamelin, J.I., Dall’Asta, L., Barrat, A., Vespignani, A.: Large scale networks fingerprinting and visualization using the k-core decomposition. In: NIPS, pp. 41–50 (2005)
Andersen, R., Chellapilla, K.: Finding dense subgraphs with size bounds. In: K. Avrachenkov, D. Donato, N. Litvak (eds.) WAW, vol. 5427, pp. 25–37 (2009)
Batagelj, V., Zaversnik, M.: An o(m) algorithm for cores decomposition of networks. CoRR, cs.DS/0310049 (2003)
Chang, L.: Efficient maximum clique computation over large sparse graphs. In A. Teredesai, V. Kumar, Y. Li, R. Rosales, E. Terzi, G. Karypis (eds.) KDD, pp. 529–538 (2019)
Chang, L., Yu, J.X., Qin, L., Lin, X., Liu, C., Liang, W.: Efficiently computing k-edge connected components via graph decomposition. In: K.A. Ross, D. Srivastava, D. Papadias (eds.) SIGMOD, pp. 205–216 (2013)
Chen, K., Wen, D., Zhang, W., Zhang, Y., Wang, X., Lin, X.: Querying structural diversity in streaming graphs. PVLDB 17(5), 1034–1046 (2024)
Cheng, J., Ke, Y., Chu, S., Tamer Özsu, M.: Efficient core decomposition in massive networks. In: S. Abiteboul, K. Böhm, C. Koch, K.-L. Tan (eds.) ICDE, pp. 51–62 (2011)
Cui, W., Xiao, Y., Wang, H., Wang, W.: Local search of communities in large graphs. In C.E. Dyreson, F. Li, M. Tamer Özsu (eds.) SIGMOD, pp. 991–1002 (2014)
Dhulipala, L., Blelloch, G.E., Shun, J.: Julienne: a framework for parallel graph algorithms using work-efficient bucketing. In: SPAA, pp. 293–304 (2017)
Fang, Y., Cheng, R., Luo, S., Jiafeng, H.: Effective community search for large attributed graphs. PVLDB 9(12), 1233–1244 (2016)
Fang, Y., Xin Huang, L., Qin, Y.Z., Zhang, W., Cheng, R., Lin, X.: A survey of community search over big graphs. VLDB J. 29, 353–392 (2020)
Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010)
Galimberti, E., Barrat, A., Bonchi, F., Cattuto, C., Gullo, F.: Mining (maximal) span-cores from temporal networks. In: CIKM, pp. 107–116 (2018)
Galimberti, E., Bonchi, F., Gullo, F.: Core decomposition and densest subgraph in multilayer networks. In: CIKM, pp. 1807–1816 (2017)
Garas, A., Schweitzer, F., Havlin, S.: A k-shell decomposition method for weighted networks. New J. Phys. 14(8), 083030 (2012)
Giatsidis, C., Thilikos, D.M., Vazirgiannis, M.: D-cores: Measuring collaboration of directed graphs based on degeneracy. In: ICDM, pp. 201–210 (2011)
Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519(3), 97–125 (2012)
Huo, W., Tsotras, V.J.: Efficient temporal shortest path queries on evolving social graphs. In: SSDBM, pp. 38:1–38:4. ACM (2014)
Janson, S., Luczak, M.J.: A simple solution to the k-core problem. Random Struct. Algorithms 30(1–2), 50–62 (2007)
Khaouid, W., Marina Barsky, S., Venkatesh, A.T.: K-core decomposition of large networks on a single PC. PVLDB 9(1), 13–23 (2015)
Khurana, U., Deshpande, A.: Efficient snapshot retrieval over historical graph data. In: ICDE, pp. 997–1008 (2013)
Kostakos, V.: Temporal graphs. Physica A 388(6), 1007–1023 (2009)
Labouseur, A.G., Olsen, P.W., Hwang, J.-H.: Scalable and robust management of dynamic graph data. In: BD3 VLDB 2013, 1018, pp. 43–48 (2013)
Li, R.-H., Qin, L., Ye, F., Yu, J.X., Xiao, X., Xiao, N., Zheng, Z.: Skyline community search in multi-valued networks. In: SIGMOD, pp. 457–472 (2018)
Li, R.-H., Su, J., Qin, L., Yu, J.X., Dai, Q.: Persistent community search in temporal networks. In: ICDE, pp. 797–808 (2018)
Li, R.-H., Yu, J.X., Mao, R.: Efficient core maintenance in large dynamic graphs. TKDE 26(10), 2453–2465 (2014)
Luczak, T.: Size and connectivity of the k-core of a random graph. Discret. Math. 91(1), 61–68 (1991)
Michail, O.: An introduction to temporal graphs: an algorithmic perspective. Internet Math. 12(4), 239–280 (2016)
Montresor, A., De Pellegrini, F., Miorandi, D.: Distributed k-core decomposition. TPDS 24(2), 288–300 (2013)
Nanavati, A.A., Gurumurthy, S., Das, G., Chakraborty, D., Dasgupta, K., Mukherjea, S., Joshi, A.: On the structural properties of massive telecom call graphs: findings and implications. In: Proceedings of the 15th ACM International Conference on Information and Knowledge Management, pp. 435–444 (2006)
Pechlivanidou, K., Katsaros, D., Tassiulas, L.: Mapreduce-based distributed k-shell decomposition for online social networks. In: SERVICES, pp. 30–37 (2014)
Ren, C., Lo, E., Kao, B., Zhu, X., Cheng, R.: On querying historical evolving graph sequences. PVLDB 4(11), 726–737 (2011)
Rost, C., Gomez, K., Christen, P., Rahm, E.: Evolution of degree metrics in large temporal graphs. In: Proceedings of BTW 2023, Datenbanksysteme für Business, Technologie und Web, Lecture Notes in Informatics (LNI), Bonn, Germany, 2023. Gesellschaft für Informatik
Sariyüce, A.E., Gedik, B., Jacques-Silva, G., Kun-Lung, W., Çatalyürek, V.Ü.: Streaming algorithms for k-core decomposition. PVLDB 6(6), 433–444 (2013)
Seidman, S.B.: Network structure and minimum degree. Soc. Netw. 5(3), 269–287 (1983)
Semertzidis, K., Pitoura, E.: Durable graph pattern queries on historical graphs. In: ICDE, pp. 541–552 (2016)
Semertzidis, K., Pitoura, E., Lillis, K.: Timereach: historical reachability queries on evolving graphs. In: EDBT, pp. 121–132 (2015)
Song, J., Wen, D., Lantian, X., Qin, L., Zhang, W., Lin, X.: On querying historical connectivity in temporal graphs. SIGMOD 2(3), 157 (2024)
Wen, D., Huang, Y., Zhang, Y., Qin, L., Zhang, W., Lin, X.: Efficiently answering span-reachability queries in large temporal graphs. In: ICDE, pp. 1153–1164 (2020)
Wen, D., Qin, L., Zhang, Y., Chang, L., Chen, L.: Enumerating k-vertex connected components in large graphs. In: ICDE, pp. 52–63 (2019)
Wen, D., Qin, L., Zhang, Y., Lin, X., Yu, J.X.: I/O efficient core graph decomposition at web scale. In: ICDE, pp. 133–144 (2016)
Wen, D., Qin, L., Zhang, Y., Lin, X., Yu, J.X.: I/O efficient core graph decomposition: application to degeneracy ordering. TKDE 31(1), 75–90 (2019)
Wu, H., Cheng, J., Lu, Y., Ke, Y., Huang, Y., Yan, D., Wu, H.: Core decomposition in large temporal graphs. In: BigData, pp. 649–658 (2015)
Yang, B., Wen, D., Qin, L., Zhang, Y., Chang, L., Li, R.-H.: Index-based optimal algorithm for computing k-cores in large uncertain graphs. In: ICDE, pp. 64–75 (2019)
Yu, M., Wen, D., Qin, L., Zhang, Y., Zhang, W., Lin, X.: On querying historical k-cores. Proc. VLDB Endow. 14(11), 2033–2045 (2021)
Zhang, H., Zhao, H., Cai, W., Liu, J., Zhou, W.: Using the k-core decomposition to analyze the static structure of large-scale software systems. J. Supercomput. 53(2), 352–369 (2010)
Zhang, W., Yang, Z., Wen, D., Wang, X.: Efficient distributed core graph decomposition. In: ICDM Workshop, pp. 1023–1031. IEEE (2023)
Zhang, Y., Yu, J.X., Zhang, Y., Qin, L.: A fast order-based approach for core maintenance. In: ICDE, pp. 337–348 (2017)
Funding
Dong Wen is supported by ARC DP230-101445 and ARC DE240100668. Lu Qin is supported by ARC FT200100787 and ARC DP240101322. Wenjie Zhang is supported by ARC DP230101445 and ARC FT210100303. Xuemin Lin is supported by NSFC U2241211 and NSFC U20B2046.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Yu, Y., Wen, D., Yu, M. et al. Querying historical K-cores in large temporal graphs. The VLDB Journal 34, 26 (2025). https://doi.org/10.1007/s00778-025-00903-1
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00778-025-00903-1