Skip to main content

Advertisement

Log in

Querying historical K-cores in large temporal graphs

  • Regular Paper
  • Published:
The VLDB Journal Aims and scope Submit manuscript

Abstract

Many real-world relationships between entities can be modeled as temporal graphs, where each edge is associated with a timestamp or a time interval representing its occurrence. The k-core is a fundamental model used to capture cohesive subgraphs in a simple graph and have drawn much research attention over the last decade. Despite widespread research, none of the existing works support the efficient querying of historical k-cores in temporal graphs. In this paper, given an integer k and a time window, we study the problem of computing all the nodes belonging to the k-core in the graph snapshot over the time window. We propose an index-based solution and several pruning strategies to reduce the index size. We design a novel algorithm to construct this index, whose running time is linear to the final index size. We also propose algorithms to maintain our index given the continuous arrival of new edges. Lastly, we conducted extensive experiments on several real-world temporal graphs to show the high effectiveness of our index-based solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1
Algorithm 2
Fig. 3
Fig. 4
Algorithm 3
Algorithm 4
Algorithm 5
Algorithm 6
Algorithm 7
Fig. 5
Algorithm 8
Algorithm 9
Fig. 6
Algorithm 10
Algorithm 11
Algorithm 12
Algorithm 13
Algorithm 14
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Notes

  1. https://github.com/yuyuanhang/Historical-K-Cores-Query.

  2. http://snap.stanford.edu/.

  3. http://konect.cc/.

  4. https://networkrepository.com/index.php.

References

  1. Akiba, T., Iwata, Y., Yoshida, Y.: Dynamic and historical shortest-path distance queries on large evolving networks by pruned landmark labeling. In: WWW, pp. 237–248 (2014)

  2. Aksu, H., Canim, M., Chang, Y.-C., Korpeoglu, I., Ulusoy, Ö.: Distributed \( k \)-core view materialization and maintenance for large dynamic graphs. TKDE 26(10), 2439–2452 (2014)

    Google Scholar 

  3. Alvarez-Hamelin, J.I., Dall’Asta, L., Barrat, A., Vespignani, A.: Large scale networks fingerprinting and visualization using the k-core decomposition. In: NIPS, pp. 41–50 (2005)

  4. Andersen, R., Chellapilla, K.: Finding dense subgraphs with size bounds. In: K. Avrachenkov, D. Donato, N. Litvak (eds.) WAW, vol. 5427, pp. 25–37 (2009)

  5. Batagelj, V., Zaversnik, M.: An o(m) algorithm for cores decomposition of networks. CoRR, cs.DS/0310049 (2003)

  6. Chang, L.: Efficient maximum clique computation over large sparse graphs. In A. Teredesai, V. Kumar, Y. Li, R. Rosales, E. Terzi, G. Karypis (eds.) KDD, pp. 529–538 (2019)

  7. Chang, L., Yu, J.X., Qin, L., Lin, X., Liu, C., Liang, W.: Efficiently computing k-edge connected components via graph decomposition. In: K.A. Ross, D. Srivastava, D. Papadias (eds.) SIGMOD, pp. 205–216 (2013)

  8. Chen, K., Wen, D., Zhang, W., Zhang, Y., Wang, X., Lin, X.: Querying structural diversity in streaming graphs. PVLDB 17(5), 1034–1046 (2024)

    Google Scholar 

  9. Cheng, J., Ke, Y., Chu, S., Tamer Özsu, M.: Efficient core decomposition in massive networks. In: S. Abiteboul, K. Böhm, C. Koch, K.-L. Tan (eds.) ICDE, pp. 51–62 (2011)

  10. Cui, W., Xiao, Y., Wang, H., Wang, W.: Local search of communities in large graphs. In C.E. Dyreson, F. Li, M. Tamer Özsu (eds.) SIGMOD, pp. 991–1002 (2014)

  11. Dhulipala, L., Blelloch, G.E., Shun, J.: Julienne: a framework for parallel graph algorithms using work-efficient bucketing. In: SPAA, pp. 293–304 (2017)

  12. Fang, Y., Cheng, R., Luo, S., Jiafeng, H.: Effective community search for large attributed graphs. PVLDB 9(12), 1233–1244 (2016)

    Google Scholar 

  13. Fang, Y., Xin Huang, L., Qin, Y.Z., Zhang, W., Cheng, R., Lin, X.: A survey of community search over big graphs. VLDB J. 29, 353–392 (2020)

    Article  Google Scholar 

  14. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010)

    Article  MathSciNet  Google Scholar 

  15. Galimberti, E., Barrat, A., Bonchi, F., Cattuto, C., Gullo, F.: Mining (maximal) span-cores from temporal networks. In: CIKM, pp. 107–116 (2018)

  16. Galimberti, E., Bonchi, F., Gullo, F.: Core decomposition and densest subgraph in multilayer networks. In: CIKM, pp. 1807–1816 (2017)

  17. Garas, A., Schweitzer, F., Havlin, S.: A k-shell decomposition method for weighted networks. New J. Phys. 14(8), 083030 (2012)

    Article  Google Scholar 

  18. Giatsidis, C., Thilikos, D.M., Vazirgiannis, M.: D-cores: Measuring collaboration of directed graphs based on degeneracy. In: ICDM, pp. 201–210 (2011)

  19. Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519(3), 97–125 (2012)

    Article  Google Scholar 

  20. Huo, W., Tsotras, V.J.: Efficient temporal shortest path queries on evolving social graphs. In: SSDBM, pp. 38:1–38:4. ACM (2014)

  21. Janson, S., Luczak, M.J.: A simple solution to the k-core problem. Random Struct. Algorithms 30(1–2), 50–62 (2007)

    Article  MathSciNet  Google Scholar 

  22. Khaouid, W., Marina Barsky, S., Venkatesh, A.T.: K-core decomposition of large networks on a single PC. PVLDB 9(1), 13–23 (2015)

    Google Scholar 

  23. Khurana, U., Deshpande, A.: Efficient snapshot retrieval over historical graph data. In: ICDE, pp. 997–1008 (2013)

  24. Kostakos, V.: Temporal graphs. Physica A 388(6), 1007–1023 (2009)

    Article  MathSciNet  Google Scholar 

  25. Labouseur, A.G., Olsen, P.W., Hwang, J.-H.: Scalable and robust management of dynamic graph data. In: BD3 VLDB 2013, 1018, pp. 43–48 (2013)

  26. Li, R.-H., Qin, L., Ye, F., Yu, J.X., Xiao, X., Xiao, N., Zheng, Z.: Skyline community search in multi-valued networks. In: SIGMOD, pp. 457–472 (2018)

  27. Li, R.-H., Su, J., Qin, L., Yu, J.X., Dai, Q.: Persistent community search in temporal networks. In: ICDE, pp. 797–808 (2018)

  28. Li, R.-H., Yu, J.X., Mao, R.: Efficient core maintenance in large dynamic graphs. TKDE 26(10), 2453–2465 (2014)

    Google Scholar 

  29. Luczak, T.: Size and connectivity of the k-core of a random graph. Discret. Math. 91(1), 61–68 (1991)

    Article  MathSciNet  Google Scholar 

  30. Michail, O.: An introduction to temporal graphs: an algorithmic perspective. Internet Math. 12(4), 239–280 (2016)

    Article  MathSciNet  Google Scholar 

  31. Montresor, A., De Pellegrini, F., Miorandi, D.: Distributed k-core decomposition. TPDS 24(2), 288–300 (2013)

    Google Scholar 

  32. Nanavati, A.A., Gurumurthy, S., Das, G., Chakraborty, D., Dasgupta, K., Mukherjea, S., Joshi, A.: On the structural properties of massive telecom call graphs: findings and implications. In: Proceedings of the 15th ACM International Conference on Information and Knowledge Management, pp. 435–444 (2006)

  33. Pechlivanidou, K., Katsaros, D., Tassiulas, L.: Mapreduce-based distributed k-shell decomposition for online social networks. In: SERVICES, pp. 30–37 (2014)

  34. Ren, C., Lo, E., Kao, B., Zhu, X., Cheng, R.: On querying historical evolving graph sequences. PVLDB 4(11), 726–737 (2011)

    Google Scholar 

  35. Rost, C., Gomez, K., Christen, P., Rahm, E.: Evolution of degree metrics in large temporal graphs. In: Proceedings of BTW 2023, Datenbanksysteme für Business, Technologie und Web, Lecture Notes in Informatics (LNI), Bonn, Germany, 2023. Gesellschaft für Informatik

  36. Sariyüce, A.E., Gedik, B., Jacques-Silva, G., Kun-Lung, W., Çatalyürek, V.Ü.: Streaming algorithms for k-core decomposition. PVLDB 6(6), 433–444 (2013)

    Google Scholar 

  37. Seidman, S.B.: Network structure and minimum degree. Soc. Netw. 5(3), 269–287 (1983)

    Article  MathSciNet  Google Scholar 

  38. Semertzidis, K., Pitoura, E.: Durable graph pattern queries on historical graphs. In: ICDE, pp. 541–552 (2016)

  39. Semertzidis, K., Pitoura, E., Lillis, K.: Timereach: historical reachability queries on evolving graphs. In: EDBT, pp. 121–132 (2015)

  40. Song, J., Wen, D., Lantian, X., Qin, L., Zhang, W., Lin, X.: On querying historical connectivity in temporal graphs. SIGMOD 2(3), 157 (2024)

    Google Scholar 

  41. Wen, D., Huang, Y., Zhang, Y., Qin, L., Zhang, W., Lin, X.: Efficiently answering span-reachability queries in large temporal graphs. In: ICDE, pp. 1153–1164 (2020)

  42. Wen, D., Qin, L., Zhang, Y., Chang, L., Chen, L.: Enumerating k-vertex connected components in large graphs. In: ICDE, pp. 52–63 (2019)

  43. Wen, D., Qin, L., Zhang, Y., Lin, X., Yu, J.X.: I/O efficient core graph decomposition at web scale. In: ICDE, pp. 133–144 (2016)

  44. Wen, D., Qin, L., Zhang, Y., Lin, X., Yu, J.X.: I/O efficient core graph decomposition: application to degeneracy ordering. TKDE 31(1), 75–90 (2019)

    Google Scholar 

  45. Wu, H., Cheng, J., Lu, Y., Ke, Y., Huang, Y., Yan, D., Wu, H.: Core decomposition in large temporal graphs. In: BigData, pp. 649–658 (2015)

  46. Yang, B., Wen, D., Qin, L., Zhang, Y., Chang, L., Li, R.-H.: Index-based optimal algorithm for computing k-cores in large uncertain graphs. In: ICDE, pp. 64–75 (2019)

  47. Yu, M., Wen, D., Qin, L., Zhang, Y., Zhang, W., Lin, X.: On querying historical k-cores. Proc. VLDB Endow. 14(11), 2033–2045 (2021)

    Article  Google Scholar 

  48. Zhang, H., Zhao, H., Cai, W., Liu, J., Zhou, W.: Using the k-core decomposition to analyze the static structure of large-scale software systems. J. Supercomput. 53(2), 352–369 (2010)

  49. Zhang, W., Yang, Z., Wen, D., Wang, X.: Efficient distributed core graph decomposition. In: ICDM Workshop, pp. 1023–1031. IEEE (2023)

  50. Zhang, Y., Yu, J.X., Zhang, Y., Qin, L.: A fast order-based approach for core maintenance. In: ICDE, pp. 337–348 (2017)

Download references

Funding

Dong Wen is supported by ARC DP230-101445 and ARC DE240100668. Lu Qin is supported by ARC FT200100787 and ARC DP240101322. Wenjie Zhang is supported by ARC DP230101445 and ARC FT210100303. Xuemin Lin is supported by NSFC U2241211 and NSFC U20B2046.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Wen, D., Yu, M. et al. Querying historical K-cores in large temporal graphs. The VLDB Journal 34, 26 (2025). https://doi.org/10.1007/s00778-025-00903-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00778-025-00903-1

Keywords