Skip to main content
Log in

A connectivity index for moving objects in an indoor cellular space

  • Original Article
  • Published:
Personal and Ubiquitous Computing Aims and scope Submit manuscript

Abstract

With the currently available indoor positioning devices such as RFID, Bluetooth and WI-FI, the locations of moving objects constitute an important foundation for a variety of applications such as the tracking of moving objects, security and way finding. Many studies have proven that most individuals spend their lives in indoor environments. Therefore, in this paper, we propose a new index structure for moving objects in cellular space. The index is based on the connectivity (adjacency) between the indoor environment cells and can effectively respond to the spatial indoor queries and enable efficient updates of the location of a moving object in indoor space. An empirical performance study suggests that the proposed indoor-tree in terms of measurements and performance is effective, efficient and robust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Alamri S, Taniar D, Safar M (2012) Indexing moving objects for directions and velocities queries. Inf Syst Front 1–14. doi:10.1007/s10796-012-9367-8

  2. Andersson A, Hagerup T, Håstad J, Petersson O (1994) The complexity of searching a sorted array of strings. In: Proceedings of the twenty-sixth annual ACM symposium on theory of computing, STOC ’94, pp 317–325, New York, NY, USA

  3. Chakka VP, Everspaugh A, Patel JM (2003) Indexing large trajectory data sets with SETI. In: CIDR. http://www-db.cs.wisc.edu/cidr/cidr2003/program/p15.pdf

  4. Chang J-W, Um J-H, LeeP W-C (2006) A new trajectory indexing scheme for moving objects on road networks. In: Bell D, Hong J (eds) Flexible and efficient information handling. Lecture notes in computer science, vol 4042. Springer, Berlin, pp 291–294

  5. Choi Y-J, Min J-K, Chung C-W (2004) A cost model for spatio-temporal queries using the TPR-tree. J Syst Softw 73(1):101–112

    Article  Google Scholar 

  6. Forno F, Malnati G, Portelli G (2005) Design and implementation of a Bluetooth ad hoc network for indoor positioning. IEE Proc Softw 152(5):223–228

    Article  Google Scholar 

  7. Frentzos E (2003) Indexing objects moving on fixed networks. In: Proceedings of the 8th international symposium on spatial and temporal databases (SSTD), Springer, pp 289–305

  8. Gibbons A (1985) Algorithmic graph theory. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  9. Güting RH, Böhlen MH, Erwig M, Jensen CS, Lorentzos NA, Schneider M, Vazirgiannis M (2000) A foundation for representing and querying moving objects. ACM Trans Database Syst 25(1):1–42

    Article  Google Scholar 

  10. Guttman A (1984) R-trees: a dynamic index structure for spatial searching. In: International conference on management of data, pp 47–57

  11. Hsu H-H, Chen C-C (2010) Rfid-based human behavior modeling and anomaly detection for elderly care. Mobile Inf Syst 6(4):341–354

    MathSciNet  Google Scholar 

  12. Hu H, Lee DL, Lee VCS (2006) Distance indexing on road networks. In: Proceedings of the 32nd international conference on very large data bases, VLDB ’06. VLDB Endowment, pp 894–905

  13. Jensen C, Lu H, Yang B (2009) Indexing the trajectories of moving objects in symbolic indoor space. In: Nikos M, Thomas S, Torben P, Kristian T, Ira A (eds) Advances in spatial and temporal databases. Lecture notes in computer science, vol 5644. Springer, Berlin, pp 208–227

  14. Kamel I , Faloutsos C (1994) Hilbert r-tree: An improved r-tree using fractals. In: Proceedings of the 20th international conference on very large data bases, VLDB ’94, pp 500–509, San Francisco, CA, USA

  15. Kang H-Y, Kim J-S, Li K-J (2009) Similarity measures for trajectory of moving objects in cellular space. In: Proceedings of the 2009 ACM symposium on applied computing, SAC ’09, pp 1325–1330, New York, NY, USA

  16. Li Y, Chen H, Xie R, Wang JZ (2011) Bgn: a novel scatternet formation algorithm for bluetooth-based sensor networks. Mobile Inf Syst 7(2):93–106

    Google Scholar 

  17. Lin D (2006) Indexing and querying moving objects databases. PhD thesis, National University of Singapore, Singapore

  18. Lin B, Su J (2004) On bulk loading TPR-tree. In: Proceedings of the international conference on mobile data management, pp 114–124

  19. Lin D, Zhang R, Zhou A (2006) Indexing fast moving objects for knn queries based on nearest landmarks. Geoinformatica 10(4):423–445

    Article  Google Scholar 

  20. Nascimento MA, Silva JRO (1998) Towards historical R-trees. In: Proceedings of the 1998 ACM symposium on applied computing, SAC ’98, pp 235–240, New York, NY, USA

  21. Okabe A, Boots B, Sugihara K, Chiu SN, Kendall DG (2008) Spatial tessellations: concepts and applications of Voronoi diagrams. In: Spatial tessellations. Wiley, pp 585–655. doi:10.1002/9780470317013.refs

  22. Organero MM, Merino PJM, Kloos CD (2012) Using Bluetooth to implement a pervasive indoor positioning system with minimal requirements at the application level. Mobile Inf Syst 8(1):73–82

    Google Scholar 

  23. Pfoser D, Jensen CS, Theodoridis Y (2000) Novel approaches to the indexing of moving object trajectories. In: International conference on very large databases, pp 395–406

  24. Ruiz-Lpez T, Garrido J, Benghazi K, Chung L (2010) A survey on indoor positioning systems: foreseeing a quality design. In: de Leon F. de Carvalho A, Rodrguez-Gonzlez S, De Paz Santana J, Rodrguez J (eds) Distributed computing and artificial intelligence. Advances in intelligent and soft computing, vol 79. Springer, Berlin, pp 373–380

  25. Saltenis S, Jensen CS, Leutenegger ST, Lopez MA (2000) Indexing the positions of continuously moving objects. SIGMOD Rec 29(2):331–342

    Article  Google Scholar 

  26. Tao Y, Papadias D (2001) Mv3r-tree: a spatio-temporal access method for timestamp and interval queries. In: Proceedings of the 27th international conference on very large data bases, VLDB ’01, pp 431–440, San Francisco, CA, USA

  27. Tao Y, Papadias D, Sun J (2003) The TPR*-tree: an optimized spatio-temporal access method for predictive queries. In: VLDB, pp 790–801. http://www.vldb.org/conf/2003/papers/S24P01.pdf

  28. Theodoridis Y, Vazirgiannis M, Sellis TK (1996) Spatio-temporal indexing for large multimedia applications. In: ICMCS, pp 441–448. http://dblp.uni-trier.de

  29. Waluyo AB, Srinivasan B, Taniar D (2005) Research in mobile database query optimization and processing. Mobile Inf Syst 1(4):225–252

    Google Scholar 

  30. Wolfson O, Xu B, Chamberlain S, Jiang L (1998) Moving objects databases: issues and solutions. In: Proceedings of tenth international conference on scientific and statistical database management, 1998, pp 111–122

  31. Yellen J, Gross JL (2005) Graph theory and its applications. Chapman and Hall/CRC, New York, pp 585–655

  32. Yuan W, Schneider M (2010) Supporting continuous range queries in indoor space. In: Proceedings of the 2010 eleventh international conference on mobile data management, MDM ’10, pp 209–214, Washington, DC, USA. IEEE Computer Society

  33. Zhao G, Xuan K, Rahayu W, Taniar D, Safar M, Gavrilova ML, Srinivasan B (2011) Voronoi-based continuous k nearest neighbor search in mobile navigation. IEEE Trans Ind Electron 58(6):2247–2257

    Article  Google Scholar 

Download references

Acknowledgments

The source of our implementations can be downloaded from the following http://users.monash.edu.au/~sultana/indoortree.rar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sultan Alamri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alamri, S., Taniar, D., Safar, M. et al. A connectivity index for moving objects in an indoor cellular space. Pers Ubiquit Comput 18, 287–301 (2014). https://doi.org/10.1007/s00779-013-0645-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00779-013-0645-3

Keywords

Navigation