Skip to main content
Log in

Exploring attractions and exhibits with interactive flashlights

  • Original Article
  • Published:
Personal and Ubiquitous Computing Aims and scope Submit manuscript

Abstract

Flashlights are cheap, robust and fun. Most people from adults to children of an early age are familiar with flashlights and can use them to search for, select and illuminate objects and features of interest. Flashlights are available in many shapes, sizes, weights and mountings. Flashlights are particularly appropriate to situations where visitors explore dark places such as the caves, tunnels, cellars and dungeons that can be found in museums, theme parks and other visitor attractions. We describe techniques by which descriptions of flashlight projections are recovered from the image sequence supplied by a fixed camera monitoring a target surface. These representations are used to locate and recognise individual flashlights and support a multi-user interface technology triggering audiovisual events in response to users’ actions and explorations. The technology has been developed in the context of, and deployed within, a set of seven interactive exhibits of varying complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abowd A, Atkeson C, Hong J, Long S, Kooper R, Pinkerton M (1997) Cyberguide: a mobile context-aware tour guide. Wireless Netw 3(5):421–433. doi:10.1023/A:1019194325861

    Article  Google Scholar 

  2. Aoki PM, Grinter RE et al (2002) Sotto voce: exploring the interplay of conversation and mobile audio spaces. CHI 2002:431–438. doi:10.1145/503376.503454

  3. Brown B, MacColl I, Chalmers M, Galani A, Randell C, Steed A (2003) Lessons from the lighthouse: collaboration in a shared mixed reality system. CHI 2003:577–584. doi:10.1145/642611.642711

  4. Scott S, Carpendale S (2006) Guest editors’ introduction: interacting with digital tabletops. Comput Graph Appl 26(5):24–27. doi:10.1109/MCG.2006.107

    Article  Google Scholar 

  5. Geller T (2006) Interactive tabletop exhibits in museums and galleries. IEEE Comput Graphics Appl 26(5):6–11. doi:10.1109/MCG.2006.111

    Article  MathSciNet  Google Scholar 

  6. Vlahakis V, Karigiannis J et al (2001) Archeoguide: first results of an augmented reality, mobile computing system in cultural heritage sites. Proc. VAST 2001:13 –140. doi:10.1145/584993.585015

  7. Schnadelbach H, Koleva B, Paxton M, Twidale M, Benford S, Anastasi R (2006) The augurscope: refining its design. Presence Teleoper Virtual Environ 15:3. doi:10.1162/pres.15.3.278

    Article  Google Scholar 

  8. Regenbrecht H, Wagner M (2002) Interaction in a collaborative augmented reality environment. CHI 2002 Extended Abstracts: 504–505. doi:10.1145/506443.506451

  9. Hongshen M, Paradiso J (2002) The findit flashlight: responsive tagging based on optically triggered microprocessor. Proc. Ubicomp, 2002

  10. Davis J, Chen X (2002) LumiPoint: multi-user location-based interaction on large tiled displays. Displays 23:5

    Article  Google Scholar 

  11. Olsen D, Nielsen T (2001) Laser pointer interaction. CHI 2001:17–22 doi:10.1145/365024.365030

  12. Green J, Schnädelbach H, Koleva B, Benford S, Pridmore T, Medina K, Harris E, Smith H (2002) Camping in the digital wilderness: tents and flashlights as interfaces to virtual worlds. CHI 2002 Extended Abstracts: 780–781. doi:10.1145/506443.506594

  13. Ghali A, Benford S, Bayoumi S, Green J, Pridmore T (2003) Visually-tracked flashlights as interaction devices. Proc. Interact 2003

  14. Stauder J, Mech R, Ostermann J (1999) Detection of moving cast shadows for object segmentation. IEEE Trans Multimedia 1(1):65–76

    Article  Google Scholar 

  15. Brelstaff G, Blake A (1988) Detecting specular reflections using lambertian constrains. 2nd International conference on computer vision: 297–302

  16. Woodham RJ (1980) Photometric method for determining surface orientation from multiple images. Opt Eng 19(1):139–144

    Article  Google Scholar 

  17. Barsky S, Petrou M (2003) The 4-source photometric stereo technique for three-dimensional surfaces in the presence of highlights and shadows. IEEE PAMI 25(10):1239–1252. doi:10.1109/TPAMI.2003.1233898

    Article  Google Scholar 

  18. Kanbara M, Yokoya, N (2004) Real-time estimation of light source environment for photorealistic augmented reality. 17th International conference on pattern recognition 2:911–914. doi:10.1109/ICPR.2004.1334407

  19. Nillius P, Eklundh J (2001) Automatic estimation of the projected light source direction. IEEE Comput Soc Conf Comput Vis Pattern Recognit (CVPA ‘ 01) 1076–1083. doi:10.1109/CVPR.2001.990650

  20. Okatani T, Deguchi K (2000) Estimation of illumination distribution using a specular sphere. 15th International conference on pattern recognition (ICPR ‘ 00): 592–595. doi:10.1109/ICPR.2000.903615

  21. Tsukiyama T (1995) Inferring the 3D shape formed by plane surfaces from isoluminance curves. Image Vis Comput 13(9):671–681. doi:10.1016/0262-8856(95)98862-N

    Article  Google Scholar 

  22. Kittler J, Illingworth J (1986) Minimum error thresholding. Pattern Recogn 19:41–44. doi:10.1016/0031-3203(86)90030-0

    Article  Google Scholar 

  23. Sahoo PK et al (1988) A survey of thresholding techniques. Comput Vis Graph Image Process 41:233–260

    Article  Google Scholar 

  24. Joseph SH (1989) Processing of line drawings for automatic input to CAD. Pattern Recogn 22:1–11

    Article  Google Scholar 

  25. Glasby E (1993) An analysis of histogram-based thresholding algorithms. Graph Models Image Process 55(6):532–537. doi:10.1006/cgip.1993.1040

    Article  Google Scholar 

  26. Rosin PL (2001) Unimodal thresholding. Pattern Recogn 34(11):2083–2096

    Article  MATH  Google Scholar 

  27. Debevec P, Malik J (1997) Recovering high dynamic range radiance maps from photographs. SIGGRAPH: 369–378. doi:10.1145/258734.258884

Download references

Acknowledgments

This work was funded by the Engineering and Physical Sciences Research Council (EPSRC) through Horizon Digital Economy research (EP/G065802/1) and the Challenge of Widespread Ubiquitous Computing (EP/F03038X/1) project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tony Pridmore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Green, J., Pridmore, T. & Benford, S. Exploring attractions and exhibits with interactive flashlights. Pers Ubiquit Comput 18, 239–251 (2014). https://doi.org/10.1007/s00779-013-0661-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00779-013-0661-3

Keywords

Navigation