Skip to main content
Log in

A context-aware cross-layer broadcast model for ad hoc networks

  • Original Article
  • Published:
Personal and Ubiquitous Computing Aims and scope Submit manuscript

Abstract

The standard 802.11 medium access control (MAC) performs poorly for heavy broadcast traffic. We present our context-aware cross-layer (CACL) broadcast model as an alternative. The basic CACL model uses only contextual data available to the 802.11 MAC and so is usable by any routing protocol that uses the 802.11 MAC. CACL fits the total broadcasts in any two-hop neighborhood to wireless channel capacity. We compare collision rates for CACL and the 802.11 MAC and conclude that, for a wide range of network conditions, CACL offers superior single-hop transmission rates. We also present a geographically constrained extension to CACL, CACL-G and compare it against CACL in vehicular scenarios of varying node density. Our results show that CACL-G offers increasingly superior performance over the basic CACL model as node density increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

References

  1. Abramson N (1977) The throughput of packet broadcasting channels. IEEE Trans Commun 25:117–128

    Article  Google Scholar 

  2. Akyildiz I, Vuran M, Akan Ö (2006) A cross-layer protocol for wireless sensor networks. In: Proceedings of the CISS

  3. Akyildiz I, Wang X (2005) A survey on wireless mesh networks. IEEE Commun Mag 43(9):s23–s30

    Article  Google Scholar 

  4. Baccelli F, Blaszcyszyn B, Muhlethaler P (2006) An ALOHA protocol for multihop mobile wireless networks. IEEE Trans Inf Theory 52:421–436

    Article  Google Scholar 

  5. Balon N, Guo J (2006) Increasing broadcast reliability in vehicular ad hoc networks. In: Proceedings of the VANET

  6. Bianchi G (2000) Performance analysis of the IEEE 802.11 distributed coordination function. IEEE J Sel Areas Commun 18:535–547

    Article  Google Scholar 

  7. Brenner P (1997) A technical tutorial on the IEEE 802.11 protocol. BreezeCom Wirel Commun

  8. Canli T, Nait-Abdesselam F, Khokhar A (2008) A cross-layer optimization approach for efficient data gathering in wireless sensor networks. In: Proceedings of the INCC

  9. Chen L, Low S, Chiang M, Doyle J (2006) Cross-layer congestion control, routing and scheduling design in ad hoc wireless networks. In: Proceedings of the IEEE INFOCOM

  10. Choi J, So J, Ko Y (2005) Numerical analysis of IEEE 802.11 broadcast scheme in multihop wireless ad hoc networks Information Networks. Springer, Berlin

    Google Scholar 

  11. Ekambaram V, Ramchandran K (2011) R-GPS (Robust GPS): enhancing GPS accuracy and security using DSRC. In: ITS world congress: special session for connected vehicular technology challenge winners

  12. Ghafoor K, Bakar K, van Eenennaam M, Khokhar R, Gonzalez A (2011) A fuzzy logic approach to beaconing for vehicular ad hoc networks. Telecommun Syst 47:1–11

    Article  Google Scholar 

  13. Jaroucheh Z, Liu X (2012) An approach to domain-based scalable context management architecture in pervasive environments. J Pers Ubiquitous Comput 16:741–755

    Article  Google Scholar 

  14. Jarupan B, Ekici E (2011) A survey of cross-layer design for VANETs. Ad Hoc Netw 9:966–983

    Article  Google Scholar 

  15. Kawadia V, Kumar P (2005) A cautionary perspective on cross layer design. IEEE Wirel Commun 12:3–11

    Article  Google Scholar 

  16. Khurana S, Kahol A, Jayasumana A (1998) Effect of hidden terminals on the performance of IEEE 802.11 MAC protocol. In: Proceedings of the LCN’98

  17. Ko Y, Vaidya N (2000) Location-aided routing (LAR) in mobile ad hoc networks. Wirel Netw 6:307–321

    Article  MATH  Google Scholar 

  18. Korkmaz G, Ekici E, Ozguner F (2006) A cross-layer multihop data delivery protocol with fairness guarantees for vehicular networks. IEEE Trans Veh Technol 55:865–875

    Article  Google Scholar 

  19. Kumar S, Raghavan V, Deng J (2006) Medium access control protocols for ad hoc wireless networks: a survey. Ad Hoc Netw 4:326–358

    Article  Google Scholar 

  20. Lin C, Jin B, Long Z, Che H (2011) On context-aware distributed event dissemination. J Pers Ubiquitous Comput 15:305–314

    Article  Google Scholar 

  21. Lin X, Shroff N (2006) The impact of imperfect scheduling on cross-layer congestion control in wireless networks. IEEE Trans Netw 14:302–315

    Article  Google Scholar 

  22. Lundquist D, Ouksel A (2007) An efficient demand-driven and density-controlled publish/subscribe protocol for mobile environments. In: Inaugural int’l conference on distributed event-based systems (DEBS 2007). Toronto, Canada

  23. Lundquist D, Ouksel A (2008) Dynamic subscription permission: extending the depth of demand-controlled flooding. In: Proceedings of the 2008 IEEE Asia-Pacific services computing conference (APSCC 2008). Yilan, Taiwan

  24. Lundquist D, Ouksel A (2009) Distributed delay: improving network throughput by reducing temporal saturation. In: Proceedings of the third int'l conference on new technologies, mobility, and security (NTMS 2009). Cairo, Egypt

  25. Lundquist, D, Ouksel A (2012) A context-aware cross-layer broadcast model for ad hoc networks: analysis of multi-hop routing. In: Proceedings of the third int'l conference on ambient systems (ANT 2012). Niagara Falls, Canada

  26. Menouar H, Filali F, Lenardi M (2006) A survey and quantitative analysis of mac protocols for vehicular ad hoc networks. IEEE Wirel Commun 13:30–35

    Article  Google Scholar 

  27. Metzner J (1976) On improving utilization in ALOHA networks. IEEE Trans Commun 24:447–448

    Article  Google Scholar 

  28. Oliveira R, Bernardo L, Pinto P (2009) The influence of broadcast traffic on IEEE 802.11 DCF networks. Comput Commun 32:439–452

    Article  Google Scholar 

  29. Ouksel A, Lundquist D (2010) Demand-driven publish/subscribe in mobile environments. Wirel Netw 16(8):2237–2261

    Article  Google Scholar 

  30. Ouksel A, Lundquist D (2012) A context-aware cross-layer broadcast model for ad hoc networks. In: Proceedings of the ninth int'l conference on mobile web information systems (MobiWIS 2012). Niagara Falls, Canada

  31. Ouksel A, Lundquist D (2011) Pollution credit trading in vehicular ad hoc networks. In: ITS world congress: special session for connected vehicular technology challenge winners

  32. Peng C, Tan Y, Xiong N, Yang L, Park J, Kim S (2009) Adaptive video-on-demand broadcasting in ubiquitous environment. J Pers Ubiquitous Comput 13:479–488

    Article  Google Scholar 

  33. Piorkowski M (2008) Mobility-centric geocasting for mobile partitioned networks. In: Proceedings of the IEEE international conference on network protocols, pp 228–237

  34. Resta G, Santi P, Simon J (2007) Analysis of multi-hop emergency message propagation. In: Proceedings of the ACM MobiHoc

  35. Shankar P, Nadeem T, Rosca J, Iftode L (2008) CARS: context-aware rate selection for vehicular networks. In: Proceedings of the ICNP

  36. Song G, Li Y (2005) Cross-layer optimization for ofdm wireless networks–part I: theoretical framework. IEEE Trans Wireless Commun 4:614–624

    Article  Google Scholar 

  37. Tong L, Zhao Q, Mergen G (2001) Multipacket reception in random access wireless networks: from signal processing to optimal medium access control. IEEE Commun Mag 39:108–112

    Article  Google Scholar 

  38. Tong L, Naware V, Venkitasubramaniam P (2004) Signal processing in random access. IEEE Signal Process Mag 21:29–39

    Article  Google Scholar 

  39. Tonguz O, Wisitpongphan N, Bai F, Mudalige P, Sadekar V (2008) Broadcasting in VANET. In: Proceedings of the INFOCOM

  40. van Eenennaam M, Wolterink W, Karagiannis G, Heijenk G (2010) Towards scalable beaconing in VANETs. In: Fourth ERCIM workshop on e-mobility

  41. Viswanath P, Tse D, Laroia R (2002) Opportunistic beamforming using dumb antennas. IEEE Trans Inf Theory 48:1277–1294

    Article  MATH  MathSciNet  Google Scholar 

  42. Wu Y, Chou P, Zhang Q, Jain K, Zhu W, Kung S (2005) Network planning in wireless ad hoc networks: a cross-layer approach. IEEE J Sel Areas Commun 23:136–150

    Article  Google Scholar 

  43. Yang L, Guo J, Wu Y (2008) Channel adaptive one hop broadcasting for VANETs. In: Proceedings of the 11th international IEEE conference on intelligent transportation systems. pp 369–374

  44. Yuan J, Zheng Y, Zhang C, Xie W, Xie X, Huang Y (2010) T-drive: driving directions based on taxi trajectories. ACM SIGSPATIAL GIS 2010:99–108

    Google Scholar 

Download references

Acknowledgments

This work is supported by a University of Illinois College of Business Administration Grant and National Science Foundation Grant CNS-0910988.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doug Lundquist.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ouksel, A., Lundquist, D. A context-aware cross-layer broadcast model for ad hoc networks. Pers Ubiquit Comput 18, 851–864 (2014). https://doi.org/10.1007/s00779-013-0699-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00779-013-0699-2

Keywords

Navigation