Skip to main content
Log in

Bitrate allocation among multiple video streams to maximize profit in content delivery networks

  • Original Article
  • Published:
Personal and Ubiquitous Computing Aims and scope Submit manuscript

Abstract

Concomitant with rapid advancements in video streaming technology, concurrence video traffic has increased significantly on communication channels. Conflicts often arise among the various video streams on these communication channels when the available bandwidth is limited because the bitrates and transmission range required often vary. This study proposes a server-side-based rate allocation algorithm for content delivery networks (CDNs). Instead of simply considering bitrate selection from the perspective of network and client conditions, the algorithm combines user experience with video bitrate allocation to maximize viewer engagement. First, the values of users are evaluated and a user value computation method is proposed. Second, we developed a profit maximization bitrate allocation approach (PMBAA) that enables both content providers and CDNs to maximize profits by providing guaranteed video quality. At last, the results of test bed experiments and analyses verify that PMBAA enables high-value clients to obtain more preferable bitrates than the HTTP live streaming algorithm developed by Apple Inc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Huang TY, Handigol N, Heller B, McKeown N, Johari R (2012) Confused, timid, and unstable: picking a video streaming rate is hard. In: Proceedings of ACM conference on internet measurement (IMC 2012), ACM Press, pp 225–238. doi:10.1145/2398776.2398800

  2. Sandvine Global Internet Phenomena Report (2015). https://www.sandvine.com/trends/global-internet-phenomena/

  3. Stockhammer T (2011) Dynamic adaptive streaming over HTTP-design principles and standards. In: Proceedings of ACM conference on multimedia systems (MMSysE), ACM Press, pp 157–168. doi:10.1145/1943552.1943572

  4. Zambelli A (2009) Smooth streaming technical overview. http://www.iis.net/learn/media/on-demand-smooth-streaming/smooth-streaming-technical-overview

  5. Pantos R, May W (2011) HTTP live streaming. https://tools.ietf.org/html/draft-pantos-http-live-streaming-06

  6. Li Z, Zhu X, Gahm J, Pan R, Hu H, Begen A, Oran D (2014) Probe and adapt: rate adaptation for HTTP video streaming at scale. IEEE J Select Areas Commmun 32(4):719–733. doi:10.1109/JSAC.2014.140405

    Article  Google Scholar 

  7. Krishnan SS, Sitaraman RK (2013) Video stream quality impacts viewer behavior: inferring causality using quasi-experimental designs. IEEE/ACM Trans Netw 21(6):2001–2014. doi:10.1109/TNET.2013.2281542

    Article  Google Scholar 

  8. Nygren E, Sitaraman RK, Sun J (2010) The akamai network: a platform for high-performance internet application. ACM SIGOPS Oper Syst Rev 44:2–19. doi:10.1145/1842733.1842736

    Article  Google Scholar 

  9. Tagliasacchi M, Valenzise G, Tubaro S (2008) Minimum variance optimal rate allocation for multiplexed H.264/AVC bitstreams. IEEE Trans Image Process. doi:10.1109/TIP.2008.924278

    MathSciNet  Google Scholar 

  10. Wang L, Vincent A (1999) Bit allocation and constraints for joint coding of multiple video programs. IEEE Trans Circuits Syst 9(6):949–959. doi:10.1109/76.785733

    Google Scholar 

  11. Su GM, Wu M (2005) Efficient bandwidth resource allocation for low delay multiuser video streaming. IEEE Trans Circuits Syst Video Technol 15(9):1124–1137. doi:10.1109/TCSVT.2005.852626

    Article  Google Scholar 

  12. Fattahi AR, Fu F, Van DSM, Paganini F (2007) Mechanism based resource allocation for multimedia transmission over spectrum agile wireless networks. IEEE J Select Area Commun 25(4):601–612. doi:10.1109/JSAC.2007.070410

    Article  Google Scholar 

  13. Freris NM, Hsu CH, Jatinder Pal S, Zhu X (2013) Distortion-aware scalable video streaming to multi network clients. IEEE/ACM Trans Netw 21(2):469–481. doi:10.1109/TNET.2012.2203608

    Article  Google Scholar 

  14. Maraj A, Seng Y, Wang Y (2013) Rate allocation among multiple video streams in IPTV network to optimize perceptual quality. In: Proceedings of 12th international conference on telecommunications (ConTEL), pp 103–108

  15. Tiwari M, Groves T, Cosman PC (2010) Competitive equilibrium bitrate allocation for multiple video streams. IEEE Trans Image Process 19(4):1009–1021. doi:10.1109/TIP.2009.2038777

    Article  MathSciNet  Google Scholar 

  16. Tiwari M, Groves T, Cosman P (2009) Pricing-based decentralized rate allocation for multiple video streams. In: Proceedings of IEEE international conference image process, pp 3065–3068. doi:10.1109/ICIP.2009.5414202

  17. Tiwari M, Groves T, Cosman P (2011) Bit-rate allocation for multiple video streams using a pricing-based mechanism. IEEE Trans Image Process 20(11):3219–3230. doi:10.1109/TIP.2011.2146262

    Article  MathSciNet  Google Scholar 

  18. Liu C, Bouazizi I, Gabbouj M (2011) Rate adaptation for adaptive http streaming. In: Proceedings of ACM multimedia systems conference (MMSys), pp 169–174. doi:10.1145/1943552.1943575

  19. Liu C, Bouazizi I, Hannuksela MM, Gabbouj M (2012) Rate adaptation for dynamic adaptive streaming over HTTP in content distribution network. Signal Process Image Commun 27:288–311. doi:10.1016/j.image.2011.10.001

    Article  Google Scholar 

  20. Miller K, Quacchio E, Gennari G, Wolisz A (2012) Adaptation algorithm for adaptive streaming over HTTP. In: Proceedings of 19th IEEE international packet video workshop (PV), pp 173–178. doi:10.1109/PV.2012.6229732

  21. Tian G, Liu Y (2012) Towards agile and smooth video adaptation in dynamic HTTP streaming. In Proceedings of 8th international conference on emerging networking experiments and technologies (CoNEXT). pp 109–120. doi:10.1.1.366. 5908

  22. Zhou C, Zhang X, Huo L, Guo Z (2012) A control-theoretic approach to rate adaptation for dynamic HTTP streaming. In: Proceedings of visual communications and image processing (VCIP), pp 1–6. doi:10. 1109/VCIP.2012.6410740

  23. Lam LS, Lee JYB, Liew SC, Wang W (2004) A transparent rate adaptation algorithm for streaming video over the internet. In: Proceedings of 18th international conference on advanced information networking and applications, pp 346–351. doi:10.1109/AINA.2004.1283935

  24. Kuschnig R, Kofler I, Hellwagner H (2010) An evaluation of TCP-based rate-control algorithms for adaptive internet streaming of H.264/SVC. In: Proceedings of ACM multimedia systems conference (MMSys), pp 157–168. doi:10.1145/1730836.1730856

  25. Jiang J, Sekar V, Zhang H (2014) Improving fairness, efficiency, and stability in HTTP-based adaptive video streaming with FESTIVE. In: Proceedings of 8th international conference on emerging networking experiments and technologies (CoNEXT), pp 326–340. doi:10.1109/TNET.2013.2291681

  26. Akhshabi S, Anantakrishnan L, Dovrolis C, Begen AC (2013) Server-based traffic shaping for stabilizing oscillating adaptive streaming players. In: Proceedings of ACM workshop on network and operating system support for digital audio and video (NOSSDAV), pp 19–24. doi:10.1145/2460782.2460786

  27. Houdaille R, Gouache S (2012) Shaping HTTP adaptive streams for a better user experience. In: Proceedings of 3rd multimedia systems conference, pp 1–9. doi:10.1145/2155555.2155557

  28. Clarkpool M, Tanner J (1999) The effects of jitter on the perceptual quality of video. In: Proceedings of 7th ACM international conference on multimedia (Part 2), pp 115–118. doi:10.1145/319878.319909

  29. Gulliver SR, Ghinea G (2006) Defining user perception of distributed multimedia quality. ACM Trans Multimed Comput Commun Appl 2(4):241–257. doi:10.1145/1201730.1201731

    Article  Google Scholar 

  30. Wu W, Arefin A, Rivas R, Nahrstedt K, Sheppard R, Yang Z (2009) Quality of experience in distributed interactive multimedia environments: toward a theoretical framework. In: Proceedings of 17th ACM international conference on multimedia, ACM Press, pp 481–490. doi:10.1145/1631272.1631338

  31. Mok RKP, Chan EWW, Chang RKC (2011) Measuring the quality of experience of HTTP video streaming. In: Proceedings of integrated network management (IM) IEEE/IFIP, pp 485–492. doi:10.1109/INM.2011.5990550

  32. Yu H, Zheng D, Zhao BY, Zheng W (2006) Understanding user behavior in large-scale video-on-demand systems. In: Proceedings of 1st ACM SIGOPS/EuroSys European conference on computer systems 40:333–444. doi:10.1145/1217935.1217968

  33. Mok RKP, Chan EWW, Luo X, Chang RK (2011) Inferring the QoE of HTTP Video streaming from user-viewing activities. In: Proceedings of 1st ACM SIGCOMM workshop on measurements up the stack, pp 31–36. doi:10.1145/2018602.2018611

  34. Ramamurthi V, Oyman O (2014) Video- QoE aware radio resource allocation for HTTP adaptive streaming. In: Proceeding of IEEE International conference on communications (ICC), pp 1076–1081. doi:10.1109/ICC.2014.6883464

  35. MathWorks Documentations (online). http://www.mathworks.com/help/vision/ref/psnr.html?s_tid=gn_loc_drop. Accessed 9 Feb 2016

Download references

Acknowledgments

This research was supported by the China National Natural Science Foundation of project, ‘‘Towards More Security Temporal-Spatial Access Control’’, No. 61472032.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongyan Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., He, H. & Li, W. Bitrate allocation among multiple video streams to maximize profit in content delivery networks. Pers Ubiquit Comput 20, 385–396 (2016). https://doi.org/10.1007/s00779-016-0919-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00779-016-0919-7

Keywords

Navigation