Skip to main content
Log in

AOM: adaptive mobile data traffic offloading for M2M networks

  • Original Article
  • Published:
Personal and Ubiquitous Computing Aims and scope Submit manuscript

Abstract

With the increasing application of machine-to machine (M2M) communication through cellular networks, such as telematics, smart metering, point-of-sale terminals, and home security, more data traffice has been produced in the cellular network. Although many schemes have been proposed to reduce data traffic, they are inefficient in practical application due to poor adaption. In this paper, we focus on how to adaptively offload data traffic for cellular M2M networks. To this end, we propose an adaptive mobile data traffic offloading model (AOM). This model can decide whether to adopt opportunistic communications or communicate via cellular networks adaptively. In the AOM, we introduce traffic offloading rate (called TOR) and local resource consumption rate (called LRCR) and analyze them based on continue time Markov chain. Theory proof and extensive simulations demonstrate that our model is accurate and effective, and can adaptively offload data traffic of cellular M2M networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. https://www.netlab.tkk.fi/tutkimus/dtn/theone/.

References

  1. Kim J, Lee J, Kim J, Yun J (2014) M2M service platforms: survey, issues, and enabling technologies. IEEE Commun Surv Tutor 16(1):61–76

    Article  Google Scholar 

  2. Shafiq M, Ji L, Liu A, Pang J, Wang J (2012) A first look at cellular machine-to-machine traffic: large scale measurement and characterization. In: Proceedings 12th ACM SIGMETRICS/PERFORMANCE joint international conference on measurement and modeling of computer systems performance evaluation review 2012, pp 65–76

  3. Wang S, Lei T, Zhang L, Hsu C, Yang F (2015) Offloading mobile data traffic for QoS-aware service provision in vehicular cyber-physical systems. Future Gener Comput Syst 61:1–10

    Google Scholar 

  4. Beckman R, Channakeshava K, Fei H, Vullikanti V, Marathe A, Marathe M, Guanhong P (2010) Implications of dynamic spectrum access on the efficiency of primary wireless market. In: Proceedings of IEEE symposium on new frontiers in dynamic spectrum (DYSPAN 2010), pp 1–12

  5. Bo H, Pan H, Kumar V, Marathe M, Jianhua S, Srinivasan A (2012) Mobile data offloading through opportunistic communications and social participation. IEEE Trans Mob Comput 11(5):821–834

    Article  Google Scholar 

  6. Dimatteo S, Pan H, Bo H, Li V (2011) Cellular traffic offloading through WiFi networks. In: Proceedings 8th IEEE international conference on mobile adhoc and sensor systems (MASS 2011), pp 192–201

  7. Wu H, Chunming Q, De S, Tonguz O (2001) Integrated cellular and ad hoc relaying systems: iCAR. IEEE J Sel Areas Commun 19(10):2105–2115

    Article  Google Scholar 

  8. Han B, Hui P, Kumar V, Marathe M, Pei G, Srinivasan A (2010) Cellular traffic offloading through opportunistic communications: a case study. In: Proceedings 5th ACM workshop on challenged networks (CHANTS 2010), pp 31–38

  9. Kyunghan L, Joohyun L, Yung Y, Injong R, Song C (2013) Mobile data offloading: how much can WiFi deliver? IEEE/ACM Trans Netw 21(2):536–550

    Article  Google Scholar 

  10. Xuejun Z, Wei G, Guohong C, Yiqi D (2011) Win-Coupon: an incentive framework for 3G traffic offloading. In: Proceedings 19th IEEE international conference on network protocols (ICNP 2011), pp 206–215

  11. Haddadi H, Hui P, Brown I (2010) MobiAd: private and scalable mobile advertising. In: Proceedings 5th ACM international workshop on mobility in the evolving internet architecture (MobiArch 2010), pp 33–38

  12. Lu X, Hui P, Lio P (2013) Offloading mobile data from cellular networks through peer-to-peer WiFi communication: a subscribe-and-send architecture. China Commun 10(6):35–46

    Article  Google Scholar 

  13. Whitbeck J, Lopez Y, Leguay M, Conan V, Amorim M (2012) Fast track article: push-and-track: saving infrastructure bandwidth through opportunistic forwarding. Pervasive Mob Comput 8:682–697

    Article  Google Scholar 

  14. Wang S, Fan C, Hsu C, Sun Q, Yang F (2014) A vertical handoff method via self-selection decision tree for internet of vehicles. IEEE Syst J PP(99):1–10

    Article  Google Scholar 

  15. Andersson H, Britton T (2012) Stochastic epidemic models and their statistical analysis. Springer Science & Business Media

  16. Conan V, Leguay J, Friedman T (2007) Characterizing pairwise inter-contact patterns in delay tolerant networks. In: Proceedings 1st international conference on autonomic computing and communication systems (ICST 2007), pp 1–9

  17. Kyunghan L, Seongik H, Joon K, Injong R, Song C (2009) SLAW: a new mobility model for human walks. In: Proceedings IEEE conference on computer communications (INFOCOM 2009), pp 855–863

  18. Kim K, Shroff NB, Rhee I, Chong S (2012) On the generalized delay-capacity tradeoff of mobile networks with Lévy flight mobility.  arXiv:1207.1514 (arXiv preprint)

  19. Yoora K, Kyunghan L, Shroff N, Injong R (2013) Providing probabilistic guarantees on the time of information spread in opportunistic networks. In: Proceedings IEEE conference on computer communications (INFOCOM 2013), pp 2067–2075

  20. Keränen A, Ott J, Kärkkäinen T (2009) The ONE simulator for DTN protocol evaluation. In: Proceedings 2nd international conference on simulation tools and techniques (ICST 2009), pp 1–10

  21. Hess A, Hummel K, Gansterer W, Sun Y (2016) Data-driven human mobility modeling: a survey and engineering guidance for mobile networking. ACM Comput Surv (CSUR) 48(3):38

Download references

Acknowledgments

This work was supported in part by the National Science Foundation of China (61472047 and 61272521).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shangguang Wang.

Appendices

Appendix 1: Proof of Lemma 1

We take an arbitrary C k (t) to prove that it follows the CTMC.

We assume that the minimum time of the number of services node from i nodes to (i + 1) nodes is T i in group k (k = 1, 2,…,K), and s k indicates the number of seeds. From (2), we have:

$$\begin{aligned} & P\left\{ {C_{k} (0) = s_{k} } \right\} = 1 \\ & P\left\{ {C_{k} (T_{1} ) = s_{k} + 1\left| {C_{k} (0) = s_{k} } \right.} \right\} = \exp \left( { - \lambda_{s,M - S}^{\text{suc}} T_{1} } \right) = P\left\{ {C_{k} (T_{1} ) = s_{k} + 1} \right\}, \\ & P\left\{ {C_{k} \left( {T_{1} + T_{2} } \right) = s_{k} + 2\left| {C_{k} (T_{1} ) = s_{k} + 1,C_{k} (0) = s_{k} } \right.} \right\} \\ & \quad = P\left\{ {C_{k} \left( {T_{1} + T_{2} } \right) = s_{k} + 2,C_{k} (T_{1} ) = s_{k} + 1,C_{k} (0) = s_{k} } \right\}/ \\ & \quad \quad P\left\{ {C_{k} (T_{1} ) = s_{k} + 1,C_{k} (0) = s_{k} } \right\} \\ &P\left\{ {C_{k} \left( {T_{1} + T_{2} } \right) = s_{k} + 2\left| {C_{k} (T_{1} ) = s_{k} + 1 } \right.} \right\}\\ & \ldots , \\ & P\left\{ {C_{k} \left( {T_{1} + T_{2} + \cdots + T_{i} + T_{i + 1} } \right)} \right. \\ & \left.\quad = s_{k} + i + 1\left| {C_{k} \left( {T_{1} } \right) = s_{k} + i, \ldots C_{k} (0) = s_{k} }\right\} \right. \\ & \quad = P\left\{ {C_{k} \left( {T_{1} + T_{2} + \cdots + T_{i} + T_{i + 1} } \right) = s_{k} + i + 1\left| {C_{k} \left( {T_{1} } \right) = s_{k} + i} \right.} \right\} \\ \end{aligned}$$

Thus, C k (t) is a CTMC. Because each group is mutual independence, each one group is a CTMC. So the process \(\{ {\mathbb{C}}(t) :t \ge 0\}\) is a K-dimensional CTMC. □

Appendix 2: Proof of Lemma 2

According to the define of t i , the conditional probability of D(t) = j + 1 is:

$$P\left\{ {D(t) = j + 1\left| {C(t) = s + i + 1} \right.} \right\} = \frac{N - j}{M - s - i}.$$

And

$$\begin{aligned} & P\left\{ {D(t) = j + 1\left| {C(t) = s + i + 1} \right.} \right\} \\ & \quad = P\left\{ {D\left( t \right) = j + 1\left| {C(t) = s + i + 1} \right.} \right\}/P\left\{ {C(t) = s + i + 1} \right\} \\ \end{aligned}$$

According to the formula total probability, we have:

$$\begin{aligned}&P\left\{ {D\left( {t_{i + 1} } \right) = j + 1} \right\} \\&\quad= \sum\limits_{i} {P\left\{ {D(t) = j + 1,C(t) = s + i + 1} \right\}} ,\end{aligned}$$

And (7) has been proved in Lemma 2. □

Appendix 3: Proof of Theorem 1

Assume that the minimum time of C(t) from i (i = 1, 2,…,M  s) nodes to (i + 1) nodes is T i . Let \(t_{i} = \sum\nolimits_{h = 0}^{i} {T_{h} }\); then, according to Lemma 2, the probability of T min is as follows:

$$\begin{aligned} & P\left\{ {T_{\hbox{min} } < t_{N} } \right\} = 0, \\ & P\left\{ {T_{\hbox{min} } = t_{N} } \right\} = \frac{{P\left\{ {C(t) = s + N\left| {C\left( {t_{N - 1} } \right) = s + N - 1} \right.} \right\}}}{M - s - N + 1}, \\ & P\left\{ {T_{\hbox{min} } = t_{N + 1} } \right\} = \frac{{P\left\{ {C(t) = s + N + 1\left| {C\left( {t_{N} } \right) = s + N} \right.} \right\}}}{M - s - N}, \\ & \ldots , \\ & P\left\{ {T_{\hbox{min} } = t_{M - s - 1} } \right\} \\ &\quad= \frac{{P\left\{ {C(t) = M - s - 1\left| {C\left( {t_{M - s - 2} } \right) = M - s - 2} \right.} \right\}}}{2} \\ & P\left\{ {T_{\hbox{min} } = t_{M - s} } \right\} = P\left\{ {C(t) = M - s\left| {C\left( {t_{M - s - 1} } \right) = M - s - 1} \right.} \right\}. \\ \end{aligned}$$

According to the probability distribution of T min, we can obtain the expectation of T min:

$$\begin{aligned} E[T_{\hbox{min} } ] & = \sum\limits_{1}^{M - s} {t_{i} P\left\{ {T_{\hbox{min} } = t_{i} } \right\}} = \sum\limits_{N}^{M - s} {t_{i} P\left\{ {T_{\hbox{min} } = t_{i} } \right\}} \\ & = \sum\limits_{i - N}^{M - s} {\frac{{P\left\{ {C(t) = s + i\left| {C\left( {t_{N - 1} } \right) = s + i - 1} \right.} \right\}}}{M - s - i + 1} \cdot \frac{1}{M\psi }t_{i} } . \\ \end{aligned}$$

Let \(\varphi \left( {t_{i} } \right) = \frac{{P\left\{ {C(t) = s + i\left| {C\left( {t_{N - 1} } \right) = s + i - 1} \right.} \right\}}}{M - s - i + 1};\) then, we have:

$$E[T_{\hbox{min} } ] = \sum\limits_{i = N}^{M - s} {\varphi \left( {t_{i} } \right) \cdot \frac{1}{M\psi }t_{i} }$$

Similarly, we calculate the expectation of t i :

$$E[t_{i} ] = \sum\limits_{i} {E\left[ {T_{i} } \right]} .$$

Because T i follows exponential distribution, according to (2), we have:

$$\begin{aligned} E\left[ {t_{i} } \right] & = \sum\limits_{i} {E\left[ {T_{i} } \right]} = \frac{1}{\psi }\sum\limits_{1}^{i} {\frac{1}{(s + i)(M - s - i)}} \\ & \approx \frac{1}{\psi M}\int_{1}^{i} {\left( {\frac{1}{s + t} + \frac{1}{M - s - t}} \right){\text{d}}t} \\ & \approx \frac{1}{\psi M}\ln \left( {\frac{M - s - 1}{M - s - i} \cdot \frac{s + i}{s + 1}} \right). \\ \end{aligned}$$

Summary, Theorem 1 has been proved. □

Appendix 4: Proof of Theorem 2

According to Theorem 1 at time t, we can obtain the probability distribution of \(\hat{T}_{\hbox{min} }\) and T min:

$$\begin{aligned} &P\left\{ {T_{\hbox{min} } = t_{N + i} } \right\} \\&\quad = \frac{{P\left\{ {C(t) = s + i - N\left| {C\left( {t_{N - 1} } \right) = s + i - N - 1} \right.} \right\}}}{M - s - N - i + 1}, \\ &P\left\{ {\hat{T}_{\hbox{min} } = t_{N + i} } \right\} \\& \quad= \frac{{P\left\{ {C(t) = s + i + N\left| {C\left( {t_{N - 1} } \right) = s + i + N - 1} \right.} \right\}}}{M - s - N - i + 1}, \\ \end{aligned}$$

i.e., \(P\left\{ {T_{\hbox{min} } = t_{N + i} } \right\} = P\left\{ {\hat{T}_{\hbox{min} } = t_{N + i} } \right\}\). From (12), we have,

$$Et_{i} = \frac{1}{\psi M}\ln \left( {\frac{M - s - 1}{M - s - i} \cdot \frac{s + i}{s + 1}} \right).$$

And because \(\hat{\lambda }_{\alpha ,\beta }^{\text{suc}} = \omega \lambda_{\alpha ,\beta }^{\text{suc}}\), i.e., \(\hat{\psi } = \omega \psi\), the expectation of \(\hat{t}_{i}\) denotes as follows:

$$\begin{aligned} E\hat{t}_{i} & = \frac{1}{{\hat{\psi }M}}\ln \left( {\frac{M - s - 1}{M - s - i} \cdot \frac{s + i}{s + 1}} \right) \\ & = \frac{1}{\omega \psi M}\ln \left( {\frac{M - s - 1}{M - s - i} \cdot \frac{s + i}{s + 1}} \right). \\ & = \omega^{ - 1} Et_{i} \\ \end{aligned}$$

In other words, \(P\left\{ {\hat{T}_{\hbox{min} } < t} \right\} = P\left\{ {\omega^{ - 1} T_{\hbox{min} } < t} \right\}\); then,

$$\hat{T}_{\hbox{min} } \mathop = \limits^{d} \omega^{ - 1} T_{\hbox{min} } .$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, T., Wang, S., Li, J. et al. AOM: adaptive mobile data traffic offloading for M2M networks. Pers Ubiquit Comput 20, 863–873 (2016). https://doi.org/10.1007/s00779-016-0962-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00779-016-0962-4

Keywords

Navigation