Abstract
The problem of pricing Bermudan options using simulations and nonparametric regression is considered. We derive optimal nonasymptotic bounds for the low biased estimate based on a suboptimal stopping rule constructed from some estimates of the optimal continuation values. These estimates may be of different nature, local or global, with the only requirement being that the deviations of these estimates from the true continuation values can be uniformly bounded in probability. As an illustration, we discuss a class of local polynomial estimates which, under some regularity conditions, yield continuation values estimates possessing the required property.
Similar content being viewed by others
References
Andersen, L.: A simple approach to the pricing of Bermudan swaptions in the multi-factor LIBOR market model. J. Comput. Finance 3, 5–32 (2000)
Audibert, J.-Y., Tsybakov, A.: Fast learning rates for plug-in classifiers. Ann. Stat. 35, 608–633 (2007)
Belomestny, D., Milstein, G.N., Spokoiny, V.: Regression methods in pricing American and Bermudan options using consumption processes. Quant. Finance 9, 315–327 (2006)
Broadie, M., Glasserman, P.: Pricing American-style securities using simulation. J. Econ. Dyn. Control 21, 1323–1352 (1997)
Carrière, J.: Valuation of early-exercise price of options using simulations and nonparametric regression. Insur. Math. Econ. 19, 19–30 (1996)
Clément, E., Lamberton, D., Protter, P.: An analysis of a least squares regression algorithm for American option pricing. Finance Stoch. 6, 449–471 (2002)
Devroye, L., Györfi, L., Lugosi, G.: A Probabilistic Theory of Pattern Recognition. Springer, Berlin (1996)
Dudley, R.M.: Uniform Central Limit Theorems. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1999)
Egloff, D.: Monte Carlo algorithms for optimal stopping and statistical learning. Ann. Appl. Probab. 15, 1396–1432 (2005)
Egloff, D., Kohler, M., Todorovic, N.: A dynamic look-ahead Monte Carlo algorithm for pricing Bermudan options. Ann. Appl. Probab. 17, 1138–1171 (2007)
Friedman, A.: Partial Differential Equations of Parabolic Type. Prentice-Hall, Englewood Cliffs (1964)
Giné, E., Guillou, A.: On consistency of kernel density estimators for randomly censored data: rates holding uniformly over adaptive intervals. Ann. Inst. Henri Poincaré B, Probab. Stat. 37, 503–522 (2001)
Glasserman, P.: Monte Carlo Methods in Financial Engineering. Springer, Berlin (2004)
Glasserman, P., Yu, B.: Number of paths versus number of basis functions in American option pricing. Ann. Appl. Probab. 14, 2090–2119 (2004)
Kohler, M., Krzyżak, A., Todorovic, N.: Pricing of high-dimensional American options by neural networks. Math. Finance 20, 383–410 (2010)
Ladyzenskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasi-Linear Equations of Parabolic Type. Transl. Math. Monogr., vol. 23. Amer. Math. Soc., Providence (1968)
Longstaff, F., Schwartz, E.: Valuing American options by simulation: a simple least-squares approach. Rev. Financ. Stud. 14, 113–147 (2001)
Mammen, E., Tsybakov, A.: Smooth discrimination analysis. Ann. Stat. 27, 1808–1829 (1999)
Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion. Springer, Berlin (1991)
Talagrand, M.: Sharper bounds for Gaussian and empirical processes. Ann. Probab. 22, 28–76 (1994)
Tsitsiklis, J., Van Roy, B.: Regression methods for pricing complex American style options. IEEE Trans. Neural Netw. 12, 694–703 (1999)
Van Roy, B.: On regression-based stopping times. Discrete Event Dyn. Syst. 20, 307–324 (2009)
Author information
Authors and Affiliations
Corresponding author
Additional information
Supported in part by the SFB 649 ‘Economic Risk’.
Rights and permissions
About this article
Cite this article
Belomestny, D. Pricing Bermudan options by nonparametric regression: optimal rates of convergence for lower estimates. Finance Stoch 15, 655–683 (2011). https://doi.org/10.1007/s00780-010-0132-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00780-010-0132-x