Skip to main content
Log in

Pricing Bermudan options by nonparametric regression: optimal rates of convergence for lower estimates

  • Published:
Finance and Stochastics Aims and scope Submit manuscript

Abstract

The problem of pricing Bermudan options using simulations and nonparametric regression is considered. We derive optimal nonasymptotic bounds for the low biased estimate based on a suboptimal stopping rule constructed from some estimates of the optimal continuation values. These estimates may be of different nature, local or global, with the only requirement being that the deviations of these estimates from the true continuation values can be uniformly bounded in probability. As an illustration, we discuss a class of local polynomial estimates which, under some regularity conditions, yield continuation values estimates possessing the required property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersen, L.: A simple approach to the pricing of Bermudan swaptions in the multi-factor LIBOR market model. J. Comput. Finance 3, 5–32 (2000)

    Google Scholar 

  2. Audibert, J.-Y., Tsybakov, A.: Fast learning rates for plug-in classifiers. Ann. Stat. 35, 608–633 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Belomestny, D., Milstein, G.N., Spokoiny, V.: Regression methods in pricing American and Bermudan options using consumption processes. Quant. Finance 9, 315–327 (2006)

    Article  MathSciNet  Google Scholar 

  4. Broadie, M., Glasserman, P.: Pricing American-style securities using simulation. J. Econ. Dyn. Control 21, 1323–1352 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  5. Carrière, J.: Valuation of early-exercise price of options using simulations and nonparametric regression. Insur. Math. Econ. 19, 19–30 (1996)

    Article  MATH  Google Scholar 

  6. Clément, E., Lamberton, D., Protter, P.: An analysis of a least squares regression algorithm for American option pricing. Finance Stoch. 6, 449–471 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  7. Devroye, L., Györfi, L., Lugosi, G.: A Probabilistic Theory of Pattern Recognition. Springer, Berlin (1996)

    MATH  Google Scholar 

  8. Dudley, R.M.: Uniform Central Limit Theorems. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1999)

    Book  MATH  Google Scholar 

  9. Egloff, D.: Monte Carlo algorithms for optimal stopping and statistical learning. Ann. Appl. Probab. 15, 1396–1432 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Egloff, D., Kohler, M., Todorovic, N.: A dynamic look-ahead Monte Carlo algorithm for pricing Bermudan options. Ann. Appl. Probab. 17, 1138–1171 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Friedman, A.: Partial Differential Equations of Parabolic Type. Prentice-Hall, Englewood Cliffs (1964)

    MATH  Google Scholar 

  12. Giné, E., Guillou, A.: On consistency of kernel density estimators for randomly censored data: rates holding uniformly over adaptive intervals. Ann. Inst. Henri Poincaré B, Probab. Stat. 37, 503–522 (2001)

    Article  MATH  Google Scholar 

  13. Glasserman, P.: Monte Carlo Methods in Financial Engineering. Springer, Berlin (2004)

    MATH  Google Scholar 

  14. Glasserman, P., Yu, B.: Number of paths versus number of basis functions in American option pricing. Ann. Appl. Probab. 14, 2090–2119 (2004)

    MATH  MathSciNet  Google Scholar 

  15. Kohler, M., Krzyżak, A., Todorovic, N.: Pricing of high-dimensional American options by neural networks. Math. Finance 20, 383–410 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. Ladyzenskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasi-Linear Equations of Parabolic Type. Transl. Math. Monogr., vol. 23. Amer. Math. Soc., Providence (1968)

    Google Scholar 

  17. Longstaff, F., Schwartz, E.: Valuing American options by simulation: a simple least-squares approach. Rev. Financ. Stud. 14, 113–147 (2001)

    Article  Google Scholar 

  18. Mammen, E., Tsybakov, A.: Smooth discrimination analysis. Ann. Stat. 27, 1808–1829 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  19. Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion. Springer, Berlin (1991)

    MATH  Google Scholar 

  20. Talagrand, M.: Sharper bounds for Gaussian and empirical processes. Ann. Probab. 22, 28–76 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  21. Tsitsiklis, J., Van Roy, B.: Regression methods for pricing complex American style options. IEEE Trans. Neural Netw. 12, 694–703 (1999)

    Article  Google Scholar 

  22. Van Roy, B.: On regression-based stopping times. Discrete Event Dyn. Syst. 20, 307–324 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Belomestny.

Additional information

Supported in part by the SFB 649 ‘Economic Risk’.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belomestny, D. Pricing Bermudan options by nonparametric regression: optimal rates of convergence for lower estimates. Finance Stoch 15, 655–683 (2011). https://doi.org/10.1007/s00780-010-0132-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00780-010-0132-x

Keywords

Mathematics Subject Classification (2000)

JEL Classification