Skip to main content
Log in

On a class of law invariant convex risk measures

  • Published:
Finance and Stochastics Aims and scope Submit manuscript

Abstract

We consider the class of law invariant convex risk measures with robust representation \(\rho_{h,p}(X)=\sup_{f}\int_{0}^{1} [AV@R_{s}(X)f(s)-f^{p}(s)h(s)]\,ds\), where 1≤p<∞ and h is a positive and strictly decreasing function. The supremum is taken over the set of all Radon–Nikodým derivatives corresponding to the set of all probability measures on (0,1] which are absolutely continuous with respect to Lebesgue measure. We provide necessary and sufficient conditions for the position X such that ρ h,p(X) is real-valued and the supremum is attained. Using variational methods, an explicit formula for the maximizer is given. We exhibit two examples of such risk measures and compare them to the average value at risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Artzner, Ph., Delbaen, F., Eber, J.M., Heath, D.: Thinking coherently. RISK 10, 68–71 (1997)

    Google Scholar 

  2. Artzner, Ph., Delbaen, F., Eber, J.M., Heath, D.: Coherent risk measures. Math. Finance 9, 203–228 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ben-Tal, A., Teboulle, M.: Penalty functions and duality in stochastic programming via φ-divergence functionals. Math. Oper. Res. 12, 224–240 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bonami, A., Lépingle, D.: Fonction maximale et variation quadratique des martingales en présence d’un poids. In: Séminaire de Probabilités XIII. Lecture Notes in Mathematics, vol. 721, pp. 294–306. Springer, Berlin (1979)

    Chapter  Google Scholar 

  5. Cheridito, P., Li, T.: Risk measures on Orlicz hearts. Math. Finance 19, 189–214 (2006)

    Article  MathSciNet  Google Scholar 

  6. Cheridito, P., Li, T.: Dual characterization of properties of risk measures on Orlicz hearts. Math. Financ. Econ. 2, 29–55 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Doléans-Dade, C., Meyer, P.A.: Inégalités de normes avec poids. In: Séminaire de Probabilités XIII. Lecture Notes in Mathematics, vol. 721, pp. 313–331. Springer, Berlin (1979)

    Chapter  Google Scholar 

  8. Filipović, D., Svindland, G.: The canonical model space for law-invariant convex risk measures is L 1. Math. Finance (2008, forthcoming)

  9. Föllmer, H., Schied, A.: Convex measures of risk and trading constraints. Finance Stoch. 6, 429–447 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Föllmer, H., Schied, A.: Stochastic Finance, An Introduction in Discrete Time, 2nd edn. de Gruyter Studies in Mathematics, vol. 27 (2004)

    Book  MATH  Google Scholar 

  11. Frittelli, M., Gianin, E.R.: Putting order in risk measures. J. Bank. Finance 26, 1473–1486 (2002)

    Article  Google Scholar 

  12. Frittelli, M., Rosazza Gianin, E.: Law-invariant convex risk measures. Adv. Math. Econ. 7, 33–46 (2005)

    Article  Google Scholar 

  13. Jouini, E., Schachermayer, W., Touzi, N.: Law invariant risk measures have the Fatou property. Adv. Math. Econ. 9, 49–71 (2006)

    Article  MathSciNet  Google Scholar 

  14. Kusuoka, S.: On law-invariant coherent risk measures. Adv. Math. Econ. 3, 83–95 (2001)

    MathSciNet  Google Scholar 

  15. Maccheroni, F., Marinacci, M., Rustichini, A.: Ambiguity aversion, robustness and the variational representation of preferences. Econometrica 74, 1447–1498 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Kupper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Angelsberg, G., Delbaen, F., Kaelin, I. et al. On a class of law invariant convex risk measures. Finance Stoch 15, 343–363 (2011). https://doi.org/10.1007/s00780-010-0145-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00780-010-0145-5

Keywords

Mathematics Subject Classification (2000)

JEL Classification