Skip to main content
Log in

Singular risk-neutral valuation equations

  • Published:
Finance and Stochastics Aims and scope Submit manuscript

Abstract

Many risk-neutral pricing problems proposed in the finance literature do not admit closed-form expressions and have to be dealt with by solving the corresponding partial integro-differential equation. Often, these PIDEs have singular diffusion matrices and coefficients that are not Lipschitz-continuous up to the boundary. In addition, in general, boundary conditions are not specified. In this paper, we prove existence and uniqueness of (continuous) viscosity solutions for linear PIDEs with all the above features, under a Lyapunov-type condition. Our results apply to European and Asian option pricing, in jump-diffusion stochastic volatility and path-dependent volatility models. We verify our Lyapunov-type condition in several examples, including the arithmetic Asian option in the Heston model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The Heston model is considered in Example 3.6 in Pascucci [28], but Assumption 3.3 is not satisfied as (3.9) does not hold.

  2. Admissibility restrictions on the parameters required for the existence of an affine process are discussed, e.g., in Duffie et al. [14].

  3. This condition ensures that the volatility process V is always positive if V 0 is positive; see Heston [20].

References

  1. Alibaud, N.: Existence, uniqueness and regularity for nonlinear parabolic equations with nonlocal terms. Nonlinear Differ. Equ. Appl. 14, 259–289 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alvarez, O., Tourin, A.: Viscosity solutions of nonlinear integro-differential equations. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 13, 293–317 (1996)

    MathSciNet  MATH  Google Scholar 

  3. Amadori, A.: Uniqueness and comparison properties of the viscosity solution to some singular HJB equations. Nonlinear Differ. Equ. Appl. 14, 391–409 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bakshi, G., Cao, C., Chen, Z.: Empirical performance of alternative option pricing models. J. Finance 52, 2003–2049 (1997)

    Article  Google Scholar 

  5. Bardi, M., Capuzzo Dolcetta, I.: Optimal Control and Viscosity Solutions of Hamilton–Jacobi–Bellman Equations, Systems & Control: Foundations & Applications. Birkhäuser, Boston (1997)

    Book  Google Scholar 

  6. Barles, G., Souganidis, P.E.: Convergence of approximation schemes for fully nonlinear equations. Asymptot. Anal. 4, 271–283 (1991)

    MathSciNet  MATH  Google Scholar 

  7. Barucci, E., Polidoro, S., Vespri, V.: Some results on partial differential equations and Asian options. Math. Models Methods Appl. Sci. 11, 475–497 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bates, D.S.: Jumps and stochastic volatility: Exchange rate processes implicit in Deutsche Mark options. Rev. Financ. Stud. 9, 69–107 (1996)

    Article  Google Scholar 

  9. Bernaschi, M., Briani, M., Papi, M., Vergni, D.: Scenario-generation methods for an optimal public debt strategy. Quant. Finance 7, 217–229 (2007)

    Article  MATH  Google Scholar 

  10. Crandall, M.G., Ishii, H., Lions, P.L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. 27, 1–67 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. Di Francesco, M., Pascucci, A.: On the complete model with stochastic volatility by Hobson and Rogers. Proc. R. Soc. Lond. A 460, 3327–3338 (2004)

    Article  MATH  Google Scholar 

  12. Di Francesco, M., Polidoro, S.: Schauder estimates, Harnack inequalities and Gaussian lower bound for Kolmogorv-type operators in non-divergence form. Adv. Differ. Equ. 11, 1261–1320 (2006)

    MATH  Google Scholar 

  13. Duffie, D., Pan, J., Singleton, K.: Transform analysis and asset pricing for affine jump-diffusions. Econometrica 68, 1343–1376 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Duffie, D., Filipović, D., Schachermayer, W.: Affine processes and applications in finance. Ann. Appl. Probab. 13, 984–1053 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ekström, E., Tysk, J.: The Black–Scholes equation in stochastic volatility models. J. Math. Anal. Appl. 368, 498–507 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ethier, S.N., Kurtz, T.G.: Markov Processes: Characterization and Convergence. Wiley, Hoboken (2005)

    MATH  Google Scholar 

  17. Falcone, M., Makridakis, C.: Numerical Methods for Viscosity Solutions and Applications. Series on Advances in Mathematics for Applied Sciences, vol. 59. World Scientific, River Edge (2001)

    Book  MATH  Google Scholar 

  18. Fleming, W.H., Soner, M.: Controlled Markov Processes and Viscosity Solutions. Springer, New York (1993)

    MATH  Google Scholar 

  19. Has’minski, R.Z.: Stochastic Stability of Differential Equations. Sijthoff and Noordhoff, Alphen aan den Rijn (1980)

    Google Scholar 

  20. Heston, S.: A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financ. Stud. 6, 327–343 (1993)

    Article  Google Scholar 

  21. Hobson, D.G., Rogers, L.C.G.: Complete models with stochastic volatility. Math. Finance 8, 27–48 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ishii, H., Kobayasi, K.: On the uniqueness and existence of solutions of fully nonlinear parabolic PDEs under the Osgood-type condition. Differ. Integral Equ. 7, 909–920 (1994)

    MathSciNet  MATH  Google Scholar 

  23. Jakobsen, E.R., Karlsen, K.H.: Continuous dependence estimates for viscosity solutions of integro-PDEs. J. Differ. Equ. 212, 278–318 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jakobsen, E.R., Karlsen, K.H.: A “maximum principle for semicontinuous functions” applicable to integro-partial differential equations. Nonlinear Differ. Equ. Appl. 13, 137–165 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Janson, S., Tysk, J.: Feynman–Kac formulas for Black–Scholes type operators. Bull. Lond. Math. Soc. 38, 269–282 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lando, D.: On Cox processes and credit risky securities. Rev. Deriv. Res. 2, 99–120 (1998)

    Google Scholar 

  27. Monti, L., Pascucci, A.: Obstacle problem for arithmetic Asian options. C. R. Math. Acad. Sci. Paris 347, 1443–1446 (2009)

    MathSciNet  MATH  Google Scholar 

  28. Pascucci, A.: Free boundary and optimal stopping problems for American Asian options. Finance Stoch. 12, 21–41 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Pham, H.: Optimal stopping of controlled jump-diffusion processes: A viscosity solution approach. J. Math. Syst. Estim. Control 8, 1–27 (1998)

    MathSciNet  Google Scholar 

  30. Rogers, L., Shi, Z.: The value of an Asian option. J. Appl. Probab. 32, 1077–1088 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  31. Stroock, D., Varadhan, S.R.S.: Multidimensional Diffusion Processes. Springer, Berlin (1979)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Papi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costantini, C., Papi, M. & D’Ippoliti, F. Singular risk-neutral valuation equations. Finance Stoch 16, 249–274 (2012). https://doi.org/10.1007/s00780-011-0166-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00780-011-0166-8

Keywords

JEL Classification

Mathematics Subject Classification (2000)

Navigation