Skip to main content
Log in

Long-term optimal portfolios with floor

  • Published:
Finance and Stochastics Aims and scope Submit manuscript

Abstract

Long-term risk-sensitive portfolio optimization is studied with floor constraint. A simple rule to characterize its solution is mentioned under a general setting. Following this rule, optimal portfolios are constructed in several ways, using the optimal portfolio without floor constraint, combined with ideas of dynamic portfolio insurance, such as CPPI (constant proportion portfolio insurance), OBPI (option-based portfolio insurance), and DFP (dynamic fund protection). In addition, examples are presented with explicit computations of solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bertrand, P., Prigent, J.-L.: Portfolio insurance strategies: OBPI versus CPPI. Finance 26, 5–32 (2005)

    Google Scholar 

  2. Bichteler, K.: Stochastic Integration with Jumps. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  3. Bielecki, T.R., Pliska, S.R.: Risk sensitive dynamic asset management. Appl. Math. Optim. 39, 337–360 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bielecki, T.R., Pliska, S.R.: Risk sensitive intertemporal CAPM, with application to fixed-income management. IEEE Trans. Autom. Control 49, 420–432 (2004) (special issue on stochastic control methods in financial engineering)

    Article  MathSciNet  Google Scholar 

  5. Black, F., Jones, R.: Simplifying portfolio insurance. J. Portf. Manag. 14, 48–51 (1987)

    Article  Google Scholar 

  6. Black, F., Perold, P.R.: Theory of constant proportion portfolio insurance. J. Econ. Dyn. Control 16, 403–426 (1992)

    Article  MATH  Google Scholar 

  7. Cvitanić, J., Karatzas, I.: On portfolio optimization under “drawdown” constraints. In: Davis, M.H.A., Duffie, D., Fleming, W., Shreve, S.E. (eds.) IMA Lecture Notes in Mathematics & Applications, vol. 65, pp. 77–88. Springer, New York (1995)

    Google Scholar 

  8. Davis, M.H.A., Lleo, S.: Risk-sensitive benchmarked asset management. Quant. Finance 8, 415–426 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. El Karoui, N., Jeanblanc, M., Lacoste, V.: Optimal portfolio management with American capital guarantee. J. Econ. Dyn. Control 29, 449–468 (2005)

    Article  MATH  Google Scholar 

  10. El Karoui, N., Meziou, A.: Constrained optimization with respect to stochastic dominance: application to portfolio insurance. Math. Finance 16, 103–117 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. El Karoui, N., Meziou, A.: Max-plus decomposition of supermartingales and convex order. Applications to American options and portfolio insurance. Ann. Probab. 36, 647–697 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fleming, W.H., Sheu, S.J.: Optimal long term growth rate of expected utility of wealth. Ann. Appl. Probab. 9, 871–903 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fleming, W.H., Sheu, S.J.: Risk-sensitive control and an optimal investment model. II. Ann. Appl. Probab. 12, 730–767 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Föllmer, H., Kabanov, Y.: Optional decomposition and Lagrange multipliers. Finance Stoch. 2, 69–81 (1997)

    Article  Google Scholar 

  15. Föllmer, H., Kramkov, D.: Optional decompositions under constraints. Probab. Theory Relat. Fields 109, 1–25 (1997)

    Article  MATH  Google Scholar 

  16. Gerber, H.P., Pafumi, G.: Pricing dynamic investment fund protection. N. Am. Actuar. J. 4, 28–37 (2000). Discussion, 5(1), 153–157

    MathSciNet  MATH  Google Scholar 

  17. Gerber, H.P., Shiu, E.S.W.: Martingale approach to pricing perpetual American options on two stocks. Math. Finance 6, 303–322 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gerber, H.P., Shiu, E.S.W.: Pricing perpetual fund protection with withdrawal option. N. Am. Actuar. J. 7(2), 60–77 (2003). Discussion, 7(2), 77–92

    MathSciNet  MATH  Google Scholar 

  19. Grossman, S.J., Zhou, Z.: Optimal investment strategies for controlling drawdowns. Math. Finance 3, 241–276 (1993)

    Article  MATH  Google Scholar 

  20. Hata, H., Iida, Y.: A risk-sensitive stochastic control approach to an optimal investment problem with partial information. Finance Stoch. 10, 395–426 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hata, H., Nagai, H., Sheu, S.J.: Asymptotics of the probability minimizing a “down-side” risk. Ann. Appl. Probab. 20, 52–89 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hata, H., Sekine, J.: Solving long term optimal investment problems with Cox–Ingersoll–Ross interest rates. Adv. Math. Econ. 8, 231–255 (2005)

    Article  MathSciNet  Google Scholar 

  23. Imai, J., Boyle, P.P.: Dynamic fund protection. N. Am. Actuar. J. 5, 31–49 (2001)

    MathSciNet  MATH  Google Scholar 

  24. Jacod, J., Shiryaev, A.N.: Limit Theorems for Stochastic Processes, 2nd edn. Springer, Berlin (2002)

    Google Scholar 

  25. Kaise, H., Sheu, S.J.: Risk sensitive optimal investment: solutions of the dynamical programming equation. In: Yin, G., Zhang, Q. (eds.) Mathematics of Finance. Contemp. Math., vol. 351, pp. 217–230. Amer. Math. Soc., Providence (2004)

    Google Scholar 

  26. Karatzas, I.: On the pricing of American options. Appl. Math. Optim. 17, 37–60 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  27. Karatzas, I., Shreve, S.: Brownian Motion and Stochastic Calculus, 2nd edn. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  28. Karatzas, I., Shreve, S.: Methods of Mathematical Finance. Springer, Berlin, (1998)

    MATH  Google Scholar 

  29. Kuroda, K., Nagai, H.: Risk sensitive portfolio optimization on infinite time horizon. Stoch. Stoch. Rep. 73, 309–331 (2002)

    MathSciNet  MATH  Google Scholar 

  30. Leland, H., Rubinstein, M.: The evolution of portfolio insurance. In: Luskin, D.L. (ed.) Portfolio Insurance: A Guide to Dynamic Hedging, pp. 3–10. Wiley, New York (1976)

    Google Scholar 

  31. Merton, R.C.: Optimum consumption and portfolio rules in a continuous-time model. J. Econ. Theory 3, 373–413 (1971)

    Article  MathSciNet  Google Scholar 

  32. Morrison, J.M., Wise, G.L.: Continuity of filtrations of sigma algebras. Stat. Probab. Lett. 6, 55–60 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  33. Nagai, H.: Optimal strategies for risk-sensitive portfolio optimization problems for general factor models. SIAM J. Control Optim. 41, 1779–1800 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. Nagai, H.: Asymptotics of the probability minimizing a “down-side” risk under partial information. Quant. Finance 11, 789–803 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Nagai, H.: (2011) Down-side risk minimization via a large deviations approach. Ann. Appl. Probab. (in press). http://www.imstat.org/aap/future_papers.html

  36. Nagai, H., Peng, S.: Risk-sensitive dynamic portfolio optimization with partial information on infinite time horizon. Ann. Appl. Probab. 12, 173–195 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  37. Pedersen, J.L.: Discounted optimal stopping problems for the maximum process. J. Appl. Probab. 37, 972–983 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  38. Peskir, G., Shiryaev, A.: Optimal Stopping and Free-Boundary Problems. Lectures in Mathematics, ETH Zürich. Birkhäuser, Basel (2006)

    MATH  Google Scholar 

  39. Perold, R.R., Sharpe, W.: Dynamic strategies for asset allocation. Financ. Anal. J., January-February, 16–27 (1988)

  40. Pham, H.: A large deviations approach to optimal long term investment. Finance Stoch. 7, 169–195 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  41. Pham, H.: A risk-sensitive control dual approach to a large deviations control problem. Syst. Control Lett. 49, 295–309 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  42. Prigent, J.-L.: Assurance du portefeuille : analyse et extension de la méthode du coussin. Banque et Marchés 51, 33–39 (2001)

    Google Scholar 

  43. Prigent, J.-L.: Portfolio Optimization and Performance Analysis. CRC Financial Mathematics Series. Chapman & Hall, London (2007)

    Book  MATH  Google Scholar 

  44. Salminen, P.: On Russian options. Theory Stoch. Process. 6(3–4), 161–176 (2000)

    Google Scholar 

  45. Sekine, J.: A note on long-term optimal portfolios under drawdown constraints. Adv. Appl. Probab. 38, 673–692 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  46. Shepp, L.A., Shiryaev, A.N.: A new look at pricing of the “Russian option”. Theory Probab. Appl. 39, 103–119 (1994)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author is deeply grateful to the Associate Editor and two anonymous referees for valuable comments and suggestions which allowed for the improvement of earlier versions of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Sekine.

Appendices

Appendix A: Proof of Proposition 5.1

First, for a given T∈ℝ>0 and x∈ℝ>0, we solve the CRRA utility maximization

where

$$u_\gamma(x):=\frac{1}{\gamma} x^{\gamma} \quad\text{with}\ \gamma\in(-\infty,0)\cup(0,1)$$

is the CRRA utility function,

is the space of admissible investment strategies, and \(\bar{\mathbb{E}}_{T}[\cdot]:=\int_{\bar{\varOmega}}(\cdot)Z_{T}^{-1} d\tilde{\mathbb{P}}\otimes d{\mathbb{P}}^{0} |_{\bar{\mathcal{F}}_{T}}\) with

$$Z_T^{-1}:={\mathcal{E}}\bigl(-\theta^\top w\bigr)_T^{-1} ={\mathcal{E}} \bigl(\theta^\top \tilde{w}\bigr)_T.$$

Recall that \((S^{0}_{T})^{\gamma} \in L^{1}({\mathbb{P}}^{0})\) since we assume (5.1). So we apply the \(({\mathbb{P}}^{0}, {\mathcal{F}}^{0}_{t})\)-Brownian martingale representation theorem to define an m-dimensional \(({\mathcal{F}}^{0}_{t})\)-progressively measurable process \(\eta^{(T)}:=(\eta_{t}^{(T)})_{t\in[0,T]}\) that satisfies

$${\mathbb{E}}^0 \bigl[ \bigl(S^0_T\bigr)^{\gamma} | {\mathcal{F}}_t^0 \bigr] = {\mathbb{E}}^0 \bigl[ \bigl(S^0_T\bigr)^{\gamma}\bigr] {\mathcal{E}} \biggl( \int\bigl(\eta^{(T)}\bigr)^\top \,dz\biggr)_t$$

for any t∈[0,T]. Using the above, we define the “state-price density” process by

$$H_t:= {\mathbb{E}}^0 \bigl[ \bigl(S^0_T\bigr)^{\gamma} \bigr] \bigl(S^0_t\bigr)^{-1} {\mathcal{E}} \bigl( -\theta^\top w\bigr)_t {\mathcal{E}} \biggl( \int\bigl(\eta^{(T)}\bigr)^\top \,dz \biggr)_t, \quad t\in[0,T].$$

Here, recalling

$$H_T = u'_\gamma\bigl(S^0_T\bigr) {\mathcal{E}} \bigl( -\theta^\top w \bigr)_T,$$

we have

$$ I_\gamma(yH_T) =S^0_TI_\gamma(y) I_\gamma \bigl( {\mathcal{E}} \bigl( -\theta^\top w \bigr)_T \bigr)$$
(A.1)

for y∈ℝ>0, where we define

$$I_\gamma(y):= \bigl(u'_\gamma\bigr)^{-1}(y) = y^{-1/(1-\gamma)}.$$

Further, note that for any ,

$$\bar{\mathbb{E}}_T\bigl[H_T X^{x,\pi}_T\bigr] =x \int_{\bar{\varOmega}} {\mathcal{E}} \biggl(\int \pi^\top \,dR \biggr)_T d\tilde{\mathbb{P}}\otimes d{\mathbb{P}}^0 \le x$$

since \({\mathcal{E}} (\int\pi^{\top}dR )\) is a \(\bar{\mathbb{P}}\)-supermartingale. We now deduce for any and x,y∈ℝ>0 that

(A.2)

where we use the relation

$$\max_{x>0} \bigl\{ u_\gamma(x)-y x \bigr\} = u_\gamma \bigl(I_\gamma(y) \bigr) -y I_\gamma(y).$$

Let

$$\hat{y}_T(x):= u'_\gamma \biggl(\frac{x}{\bar{\mathbb{E}}_TH_T I_\gamma(H_T)} \biggr).$$

We see that

(A.3)

where we use the relation (A.1) and definition (5.2). So, in (A.2), let \(y:=\hat{y}_{T}(x)\), recall relation (A.3), and use the \(\bar{\mathbb{P}}\)-martingale property of \({\mathcal{E}} ( \int\hat{\pi}^{\top}\,dR )\). We now deduce the optimality of , i.e.,

$$\bar{\mathbb{E}}_T u_\gamma \bigl( X^{x,\pi}_T\bigr) \le \bar{\mathbb{E}}_T u_\gamma \bigl(X^{x,\hat{\pi}1_{[0,T]}}_T \bigr)$$

for any , or equivalently

$$ \frac{1}{\gamma} \log \bar{\mathbb{E}}_T \bigl(X^{x,\pi}_T \bigr)^\gamma \le \frac{1}{\gamma} \log \bar{\mathbb{E}}_T \bigl( X^{x,\hat{\pi}1_{[0,T]}}_T\bigr)^\gamma $$
(A.4)

for any .

Next, from (A.4), we see that for any and T∈ℝ>0,

This implies the optimality of \(\hat{\pi}\) for \((\tilde{\mathrm{ RS}})\) with and the relation (5.3). □

Appendix B: Proof of Theorem 5.2

First of all, let us check the integrability conditions stated in Conditions 4.5 and 4.10. Note that

$$\frac{K_t}{S^0_t} = K_0 {\mathrm{e}}^{|\alpha| (\tilde{\nu}_t - c_1 t)}$$

where c 1:=|α|/2+β/|α| and \(\tilde{\nu}:=\alpha^{\top}\tilde{w}/|\alpha|\) is a \(\tilde{\mathbb{P}}\)-Brownian motion. So, we see

Similarly, we deduce that

$$\frac{K_s}{\hat{X}_s} = K_0 {\mathrm{e}}^{c_2 (\hat{\nu}_s - c_3 s)}.$$

Here, c 2:=|αθ/(1−γ)| and c 3:=c 2/2+β/c 2 are constants, and using the \(\hat{\mathbb{P}}\)-Brownian motion \(\hat{w}:=(\hat{w}_{t})_{t\ge0}\), where

$$\hat{w}_t := \tilde{w}_t -\int_0^t\sigma_u^\top\hat{\pi}_u \,du =\tilde{w}_t -\frac{1}{1-\gamma}\theta t,$$

we define a 1-dimensional \(\hat{\mathbb{P}}\)-Brownian motion \(\hat{\nu}:= (\alpha-\theta/(1-\gamma) )^{\top}\hat{w}/c_{2}\). So we see that

We are now in a position to show the assertions (1)–(4).

(1) \(\hat{V}_{\mathrm{ OBPI}}\) and \(\hat{V}_{\mathrm{ DFP}}\) can be derived in several ways. For \(\hat{V}_{\mathrm{ OBPI}}\), one derivation is introduced in Sect. 8 of Gerber and Shiu [17]. Here, we apply the computation for the American perpetual call option to derive it as follows. Recalling

from (OBPI′), we deduce that

(B.1)

where we define

$$P_t(x) := x \exp \biggl[ \bigl(\alpha-\sigma^\top\hat{\pi}\bigr)^\top\hat{w}_t + \biggl\{ -\beta -\frac{1}{2}\bigl|\alpha-\sigma^\top\hat{\pi}\bigr|^2 \biggr\}t \biggr].$$

In (B.1), we apply the computation of the American perpetual call option price, regarding P t (x 1/x 2) as the Black–Scholes stock price at time t with initial value x 1/x 2, volatility \(|\alpha-\sigma^{\top}\hat{\pi}|\), dividend rate β>0 and zero interest rate. Recall that for the asset price process

$$P_t^{(r)}(x) := x \exp \biggl[ a z_t + \biggl\{r-\beta-\frac{1}{2}a^2 \biggr\}t \biggr] \quad(t\ge0),$$

where a>0, z is a 1-dimensional \((\hat{\mathbb{P}}, \hat{\mathcal{F}}_{t})\)-Brownian motion, β is a dividend rate and r is an interest rate with 0<β<r, we have

(B.2)

where

$$k:=\frac{1}{a} \bigl(\sqrt{\ell^2 +2r} -\ell \bigr)-1 \quad \text{and}\quad \ell:=\frac{r-\beta}{a}-\frac{a}{2}$$

(see e.g. Sect. 2.6 of [28]). The computation to derive (B.2) can be straightforwardly extended to deduce

(B.3)

(formally, (B.3) is obtained by letting r=0 in (B.2)). Thus, the expression for \(\hat{V}_{\mathrm{ OBPI}}\) follows.

For \(\hat{V}_{\mathrm{ DFP}}\), one derivation is introduced in Remark (a) in Sect. 2 of [18]. Here, we directly compute it as follows. Recalling (4.12) in Remark 4.8, we deduce that

where

$$U_\mathrm{ DFP}(y_1,y_2) := \hat{\mathbb{E}} \Bigl[\sup_{s\in[0,\infty)} P_s(y_1) \vee y_2\Bigr].$$

Furthermore, letting

$$a:=\bigl|\alpha-\sigma^\top\hat{\pi}\bigr|, \qquad b:=\frac{\beta}{a}+\frac{a}{2} >0$$

and using a 1-dimensional \((\hat{\mathbb{P}}, \hat{\mathcal{F}}_{t})\)-Brownian motion z, we see that

Thus, the expression for \(\hat{V}_{\mathrm{ DFP}}\) follows (or we can utilize computations for the Russian perpetual option to derive \(\hat{V}_{\mathrm{ DFP}}\), letting the discounting rate equal to 0 in the Russian option pricing formula in Shepp and Shiryaev [46], Pedersen [37], and [44]).

(2) Recall that

$$\hat{V}_\mathrm{ OBPI}(x_1,x_2) =x_2 \biggl \{ U_\mathrm{ OBPI} \biggl( \frac{x_1}{x_2} \biggr)+1 \biggr\},$$

where we use (B.1) and (B.3), and

$${V}_\mathrm{ OBPI}(t,\lambda)= \hat{V}_\mathrm{ OBPI} ( {K_t}, {\lambda\hat{X}_t} ) ={\lambda\hat{X}_t} \biggl\{U_\mathrm{ OBPI} \biggl( P_t \frac{K_0}{\lambda} \biggr)+1 \biggr\}.$$

Note here that U OBPI is convex, that \(U_{\mathrm{ OBPI}} \in C^{1}({\mathbb{R}}_{>0})\cap C^{2} ({\mathbb{R}}_{>0} \setminus\{ \frac{1+\kappa}{\kappa}\} )\), and that x U OBPI(x−)= x U OBPI(x+) at \(x=\frac{1+\kappa}{\kappa}\). So, we apply the Itô–Meyer–Tanaka formula and the occupation times formula to deduce

$$d {U}_\mathrm{ OBPI} (P_t) =U'_\mathrm{ OBPI}(P_t)dP_t +\frac{1}{2} U''_\mathrm{ OBPI}(P_t)1_{ \{ P_t < \frac{1+\kappa}{\kappa} \}} d\langle P \rangle_t.$$

Hence, the integrand of the martingale part of dV OBPI(t,λ) is computed as

From this, the expression for \(\hat{\pi}^{\mathrm{ OBPI}}\) follows, letting \(\lambda:=\hat{\lambda}_{\mathrm{ OBPI}}(x)\).

Similarly, recalling \(\hat{V}_{\mathrm{ DFP}} \in C^{2}({\mathbb{R}}_{>0}^{2})\), we use Itô’s formula to deduce

The expression for \(\hat{\pi}^{\mathrm{ DFP}}\) follows from this, letting \(\lambda:=\hat{\lambda}_{\mathrm{ DFP}}(x)\).

(3) The expression of G follows from the expression of \(\hat{V}_{\mathrm{ OBPI}}\), and the expression of \(\hat{\pi}^{\mathrm{OBPI}\mbox{-}\mathrm{G}}\) follows by using a similar calculation as in the proof of (2).

(4) Recall that for i∈{OBPI,DFP}, \(\hat{\lambda}_{i}(x)\), respectively, satisfies

$$\hat{V}_{i} \bigl(K_0, \hat{\lambda}_i(x)\bigr)=x$$

for any xK 0. Thus,

$$\hat{V}_\mathrm{ OBPI} \biggl(K_0, \frac{\kappa}{1+\kappa}\hat{\lambda}_\mathrm{ DFP}(x) \biggr) =\frac{\kappa}{1+\kappa} \hat{V}_\mathrm{ DFP}\bigl( K_0, \hat{\lambda}_\mathrm{ DFP}(x) \bigr) =\frac{\kappa}{1+\kappa}x$$

follows for any xK 0, which implies

$$\hat{\lambda}_\mathrm{ OBPI} \biggl( \frac{\kappa}{1+\kappa} x \biggr)=\frac{\kappa}{1+\kappa}\hat{\lambda}_\mathrm{ DFP}(x)$$

for any xK 0. Similarly, we see that

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sekine, J. Long-term optimal portfolios with floor. Finance Stoch 16, 369–401 (2012). https://doi.org/10.1007/s00780-012-0175-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00780-012-0175-2

Keywords

Mathematics Subject Classification

JEL Classification

Navigation