Skip to main content
Log in

Pricing vulnerable claims in a Lévy-driven model

  • Published:
Finance and Stochastics Aims and scope Submit manuscript

Abstract

We obtain an explicit expression for the price of a vulnerable claim written on a stock whose predefault dynamics follows a Lévy-driven SDE. The stock jumps to zero at default with a hazard rate given by a negative power of the stock price. We recover the characteristic function of the terminal log price as the solution of an infinite-dimensional system of complex-valued first-order ordinary differential equations. We provide an explicit eigenfunction expansion representation of the characteristic function in a suitably chosen Banach space and use it to price defaultable bonds and stock options. We present numerical results to demonstrate the accuracy and efficiency of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. \(g(n)=\overline{\varOmega}(h(n))\) as n→∞ if there exist C>0 and \(\bar{n}>0\) such that |g(n)|≥C|h(n)| for all \(n>\bar{n}\).

References

  1. Andersen, L., Buffum, D.: Calibration and implementation of convertible bond models. J. Comput. Finance 7, 1–34 (2004)

    Google Scholar 

  2. Anderson, J., Dash, E.: For Lehman, more cuts and anxiety. The New York Times, August 28, 2008. Available online at http://www.nytimes.com/2008/08/29/business/29wall.html?dbk

  3. Ayache, E., Forsyth, P., Vetzal, K.: The valuation of convertible bonds with credit risk. J. Deriv. 11, 9–29 (2003)

    Article  Google Scholar 

  4. Bélanger, A., Shreve, S., Wong, D.: A general framework for pricing credit risk. Math. Finance 14, 317–350 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bielecki, T., Rutkowski, M.: Credit Risk: Modelling, Valuation and Hedging. Springer, New York (2001)

    Google Scholar 

  6. Carr, P., Linetsky, V.: A jump to default extended CEV model: an application of Bessel processes. Finance Stoch. 10, 303–330 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Carr, P., Linetsky, V., Mendoza-Arriaga, R.: Time-changed Markov processes in unified credit-equity modeling. Math. Finance 20, 527–569 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  8. Carr, P., Madan, D.: The variance gamma process and option pricing. Eur. Finance Rev. 2, 79–105 (1998)

    Article  MATH  Google Scholar 

  9. Carr, P., Madan, D.: Local volatility enhanced by a jump to default. SIAM J. Financ. Math. 1, 2–15 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  10. Carr, P., Wu, L.: Stock options and credit default swaps: a joint framework for valuation and estimation. J. Financ. Econom. 8, 409–449 (2010)

    Article  Google Scholar 

  11. Carr, P., Wu, L.: A simple robust link between American puts and credit protection. Rev. Financ. Stud. 24, 473–505 (2011)

    Article  Google Scholar 

  12. Comtet, A., Monthus, C., Yor, M.: Exponential functionals of Brownian motion and disordered systems. J. Appl. Probab. 35, 255–271 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  13. Cont, R., Tankov, P.: Financial Modeling with Jump Processes. Chapman & Hall/CRC Press, London/Boca Raton (2003)

    Book  Google Scholar 

  14. Davis, M., Lischka, F.R.: Convertible bonds with market risk and credit risk. In: Chan, R.H., Kwok, Y.-K., Yao, D., Zhang, Q. (eds.) Applied Probability: Proceedings of an IMS Workshop on Applied Probability. AMS/IP Stud. Adv. Math., vol. 26, pp. 45–58. Am. Math. Soc., Providence (1999). May 31, 1999–June 12, 1999, Institute of Mathematical Sciences at the Chinese University of Hong Kong

    Google Scholar 

  15. Dewynne, J.N., Shaw, W.T.: Differential equations and asymptotic solutions for arithmetic Asian options: ‘Black–Scholes formulae’ for Asian rate calls. Eur. J. Appl. Math. 19, 353–391 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. Donati-Martin, C., Ghomrasni, R., Yor, M.: On certain Markov processes attached to exponential functionals of Brownian motion: application to Asian options. Rev. Mat. Iberoam. 17, 179–193 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Duffie, D., Singleton, K.: Credit Risk. Princeton University Press, Princeton (2003)

    Google Scholar 

  18. Dufresne, D.: Weak convergence of random growth processes with applications to insurance. Insur. Math. Econ. 8, 187–201 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  19. Dufresne, D.: The distribution of a perpetuity, with applications to risk theory and pension funding. Scand. Actuar. J. 1/2, 39–79 (1990)

    Article  MathSciNet  Google Scholar 

  20. Fang, F., Oosterlee, C.W.: A novel pricing method for European options based on Fourier-cosine series expansions. SIAM J. Sci. Comput. 31, 826–848 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  21. Foschi, P., Pagliarani, S., Pascucci, A.: Black–Scholes formulae for Asian options in local volatility models. J. Comput. Appl. Math. 237, 442–459 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  22. Gobet, E., Miri, M.: Weak approximation of averaged diffusion processes. Stoch. Process. Appl. 124, 475–504 (2013)

    Article  MathSciNet  Google Scholar 

  23. Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus. Springer, New York (1992)

    Google Scholar 

  24. Lando, D.: Credit Risk Modeling. Theory and Applications. Princeton University Press, Princeton (2004)

    Google Scholar 

  25. Linetsky, V.: Spectral expansions for Asian (average price) options. Oper. Res. 52, 856–867 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  26. Linetsky, V.: Pricing equity derivatives subject to bankruptcy. Math. Finance 16, 255–282 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  27. Lorig, M., Pagliarani, S., Pascucci, A.: A family of density expansions for Lévy-type processes with default. Annals of Applied Probability (2014). To appear, available online at http://www.imstat.org/aap/future_papers.html

  28. Merton, R.: On the pricing of corporate debt: the risk structure of interest rates. J. Finance 29, 449–470 (1974)

    Google Scholar 

  29. Pascucci, A.: PDE and Martingale Methods in Option Pricing. Bocconi & Springer Series, vol. 2. Springer, Milan (2011)

    Book  MATH  Google Scholar 

  30. Pasin, L., Vargiolu, T.: Optimal portfolio for HARA utility functions where risky assets are exponential additive processes. Econ. Notes 39(1/2), 65–90 (2010)

    Article  Google Scholar 

  31. Protter, P.: Stochastic Integration and Differential Equations, 2nd edn. Springer, Berlin (2004)

    MATH  Google Scholar 

  32. Sato, K.-I.: Lévy Processes and Infinitely Divisible Distributions. Cambridge Studies in Advanced Mathematics, vol. 68. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  33. Kobayashi, T., Nakagawa, N., Takahashi, A.: Pricing convertible bonds with default risk. J. Fixed Income 11, 20–29 (2001)

    Article  Google Scholar 

  34. Vec̀er̀, J.: A new PDE approach for pricing arithmetic average Asian options. J. Comput. Finance 4(4), 105–113 (2001)

    Google Scholar 

  35. Wong, E.: The construction of a class of stationary Markoff processes. In: Bellman, R. (ed.) Sixteenth Symposium in Applied Mathematics—Stochastic Processes in Mathematical Physics and Engineering, pp. 264–276. Am. Math. Soc., Providence (1964)

    Chapter  Google Scholar 

  36. Yor, M.: On some exponential functionals of Brownian motion. Adv. Appl. Probab. 24, 509–531 (1992)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the grant CPDA138873-2013 of the University of Padova “Stochastic models with spatial structure and applications to new challenges in Mathematical Finance, with a focus on the post-2008 financial crisis environment and on energy markets.” A significant portion of the research reported in this paper was done while Stefano Pagliarani was visiting Agostino Capponi at Purdue University, within his doctorate program in the Department of Mathematics at the University of Padova. Stefano would like to thank the Department of Industrial Engineering at Purdue University for the hospitality during his stay. The authors would like to thank two anonymous referees for constructive comments which contributed to improve the quality of this manuscript. They would also like to thank Martino Garonzi for helping with the proof of Lemma 3.12.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agostino Capponi.

Appendix

Appendix

This section contains the proofs of Lemmas 3.7, 3.12, 3.14, and 3.15.

Proof of Lemma 3.7

We only prove (3.24) and (3.25). Relations (3.26)–(3.28) can be proved analogously by using the definition of f n in (3.17).

We first prove (3.24). By (3.12) and (3.13) we have

$$ f(n i)=-p\Big(r-q+\frac{{\sigma}^2 }{2}\Big)n+\frac {1}{2}p^2{\sigma}^2n^2+\psi(n i) $$
(A.1)

with

$$ \psi(n i)=\int_{{\mathbb{R}}}\big( -n p( 1-e^z ) + e^z( e^{-n p z} -1) \big)\nu (dz) . $$
(A.2)

Clearly, the first part grows as n 2 as n goes to ∞. Now, for n large enough, we have

$$\frac{d}{dz} \big( -n p( 1-e^z ) + e^z( e^{-n p z} -1) \big)=(n p - 1) e^{z}(1-e^{-n p z})\geq0 \quad\Longleftrightarrow\quad z \geq0, $$

and thus z↦−np(1−e z)+e z(e npz−1) has a minimum at z=0. Therefore, for n large enough,

$$\psi(n i) \geq\big( -n p( 1 - e^{- \bar{z} } ) + e^{- \bar{z} }( e^{n p \bar{z} } -1) \big) \nu\big((-\infty,- \bar{z} ]\big), $$

and this proves (3.24). We now prove (3.25). By (A.1) and (A.2) we have

$$f\big((n+1) i\big)-f(n i)=-p\Big(r-q+\frac{{\sigma}^2 }{2}\Big)+\frac {1}{2}p^2{\sigma}^2(2n +1)+\psi\big((n+1) i\big)-\psi(n i) $$

with

$$\psi\big((n+1) i\big)-\psi(n i)=\int_{{\mathbb{R}}}\big( -p( 1-e^z ) + e^{z(1-np)}( e^{- p z} - 1) \big)\nu(dz) . $$

Also in this case, one can see that for n large enough,

$$\frac{d}{dz}\big( -p( 1-e^z ) + e^{z(1-np)}( e^{- p z} - 1 )\big) \geq 0 \quad\Longleftrightarrow\quad z \geq0, $$

and thus z↦−p(1−e z)+e z(1−np)(e pz−1)≥0 has a minimum at z=0. Again,

$$\psi\big((n+1) i\big)-\psi(n i) \geq\big( -p( 1-e^{- \bar{z} }) + e^{{- \bar{z} }(1-np)}( e^{p \bar{z} } - 1) \big) \nu\big((-\infty,- \bar{z} ]\big) $$

for any n suitably large. □

Proof of Lemma 3.12

Clearly, apart from rescaling the summation indices, we can assume without loss of generality that k=0. Let us fix m>0 and note that (3.33) is true if and only if

$$ p(z_m)=0, $$
(A.3)

where

$$\begin{aligned} p(y)=1-\sum_{n=0}^{m-1} \prod_{\scriptstyle\ell=0 \atop \scriptstyle\ell\neq n}^{m-1}\frac{y-z_\ell}{z_n-z_\ell}. \end{aligned}$$

Indeed,

$$\begin{aligned} p(z_m)&= 1-\sum_{n=0}^{m-1} \prod_{\scriptstyle\ell=0 \atop \scriptstyle\ell\neq n}^{m-1}\frac{z_m-z_\ell}{z_n-z_\ell}= \left ( \prod _{\ell=0}^{m-1}\frac{z_m-z_\ell}{z_m-z_\ell} \right)-\sum_{n=0}^{m-1} \prod_{\scriptstyle\ell=0 \atop\scriptstyle\ell\neq n}^{m-1}\frac {z_m-z_\ell}{z_n-z_\ell} \\ &= \bigg( \prod_{\ell=0}^{m-1}\frac{z_m-z_\ell}{z_m-z_\ell} \bigg)+\sum _{n=0}^{m-1}\bigg(\frac{z_m-z_n}{z_n-z_m} \prod_{\scriptstyle\ell=0 \atop\scriptstyle\ell\neq n}^{m-1}\frac{z_m-z_\ell}{z_n-z_\ell }\bigg) \\ &=\sum_{n=0}^m\bigg( \prod_{\ell=0}^{m-1} ( z_m-z_\ell) \prod _{\scriptstyle\ell=0 \atop\scriptstyle\ell\neq n}^{m}\frac {1}{z_n-z_\ell} \bigg)=\bigg(\prod_{\ell=0}^{m-1} (z_m-z_\ell) \bigg)\sum_{n=0}^m \prod_{\scriptstyle\ell=0 \atop\scriptstyle\ell \neq n}^{m}\frac{1}{z_n-z_\ell}. \end{aligned}$$

Now we prove that p(y)≡0. Indeed, for any z i , 0≤im−1, we have

$$\begin{aligned} \prod_{\scriptstyle\ell=0 \atop\scriptstyle\ell\neq n}^{m-1}\frac {z_i-z_\ell}{z_n-z_\ell}= \begin{cases} 1,& n=i,\\ 0,& n\neq i. \end{cases} \end{aligned}$$

Therefore, p(z i )=0, and z 0,…,z m−1 are m distinct roots of p, which is a polynomial of degree at most m−1. Thus, p≡0, and this proves (A.3). □

Proof of Lemma 3.14

From the definitions (3.31) and (3.32) we have

$$\begin{aligned} b_{m,n}v_n(j)= \begin{cases} (\prod_{\ell=j}^{n-1} \frac{i({\xi}+\ell i)}{f_n-f_\ell}) ( \prod_{\ell =n}^{m-1} \frac{i({\xi}+\ell i)}{f_n-f_{\ell+1}} ), & j \leq n, \\ 0, & \mbox{otherwise}, \end{cases} \end{aligned}$$

for any mn≥0. Therefore, by the relations in Lemma 3.7, for a suitable constant C>0,

$$\begin{aligned} \Vert b_{m,n}v_n\Vert^2&=\sum_{j=0}^n e^{-f((j+1) i)\log{(j+1)}} |b_{m,n}v_n(j)|^2\\ & = \bigg( \prod_{\ell=n}^{m-1} \frac{|{\xi}+\ell i|^2}{|f_n-f_{\ell +1}|^2}\bigg) \sum_{j=0}^n e^{-f((j+1) i)\log{(j+1)}} \prod_{\ell =j}^{n-1} \frac{|{\xi}+\ell i|^2}{|f_n-f_\ell|^2} \\ &\leq\bigg( \prod_{\ell=n}^{m-1} \frac{|{\xi}+\ell i|^2}{|f_n-f_{\ell +1}|^2} \bigg) n C^n \prod_{\ell=0}^{n-1} \frac{|{\xi}+\ell i|^2}{|f_n-f_\ell|^2}\\ &=\bigg( \prod_{\ell=0}^{m-1} |{\xi}+\ell i|^2 \bigg) \bigg( \prod_{\ell =n+1}^{m} \frac{1}{|f_n-f_{\ell}|^2} \bigg) n C^n \prod_{\ell=0}^{n-1} \frac{1}{|f_n-f_\ell|^2}. \end{aligned}$$

Now, setting

$$g(n):=n^{1/2} C^{n/2} \prod_{\ell=0}^{n-1} \frac{1}{|f_n-f_\ell|}, $$

we get

$$\begin{aligned} \Vert b_{m,n}v_n \Vert\leq g(n) \bigg( \prod_{\ell=0}^{m-1} |{\xi }+\ell i| \bigg) \bigg( \prod_{\ell=n+1}^{m} \frac{1}{|f_n-f_{\ell}|} \bigg) \end{aligned}$$

for any mn≥0. Finally, by (3.28) we obtain

$$\begin{aligned} \prod_{\ell=0}^{n-1} \frac{1}{|f_n-f_\ell|} \leq\prod_{l=0}^{n-1} \frac{1}{| |f_n|-|f_\ell||} \leq\prod_{\ell=0}^{n-1} \frac{1}{| |f_n|-|f_{n-1}||} & \leq\prod_{\ell=0}^{n-1} e^{- p \bar{z} (n-1)} \\ &= e^{- p \bar{z} (n^2+n)} \end{aligned}$$

for any n greater than a suitable \(\bar{n}\in{\mathbb{N}}_{0}\), which yields the desired result. □

Proof of Lemma 3.15

From the well-known identity \(\sum_{k=0}^{m} {m \choose k} p^{k} (1-p)^{m-k} = 1\), we have

$${m \choose k} p^k (1-p)^{m-k} \leq1\quad\forall k \leq m \in {\mathbb{N}}_0,\ \forall p \in(0,1). $$

By letting p=1/2 we obtain \({m \choose k} \leq2^{m}\), which means m!≤2m k!(mk)!. Using this fact, we have

$$\begin{aligned} \sum_{j=0}^{\infty} C^j \left( j+n-1\right)! e^{- p \bar{z} j(j+1)/2} \leq& \sum_{j=0 }^{\infty} C^j 2^{j+n-1} n! (j - 1)! e^{- p \bar{z} j(j+1)/2} \\ = & 2^{n-1} n! \sum_{j=0}^{\infty} (2 C )^j (j - 1)! e^{- p \bar {z} j(j+1)/2}. \end{aligned}$$

The latter sum converges and does not depend on n; so the desired result follows. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Capponi, A., Pagliarani, S. & Vargiolu, T. Pricing vulnerable claims in a Lévy-driven model. Finance Stoch 18, 755–789 (2014). https://doi.org/10.1007/s00780-014-0239-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00780-014-0239-6

Keywords

Mathematics Subject Classification (2010)

JEL Classification

Navigation