Skip to main content
Log in

No-arbitrage up to random horizon for quasi-left-continuous models

  • Published:
Finance and Stochastics Aims and scope Submit manuscript

Abstract

This paper studies the impact, on no-arbitrage conditions, of stopping the price process at an arbitrary random time. As price processes, we consider the class of quasi-left-continuous semimartingales, i.e., semimartingales that do not jump at predictable stopping times. We focus on the condition of no unbounded profit with bounded risk (called NUPBR), also known in the literature as no arbitrage of the first kind. The first principal result describes all the pairs of quasi-left-continuous market models and random times for which the resulting stopped model fulfils NUPBR. Furthermore, for a subclass of quasi-left-continuous local martingales, we construct explicitly martingale deflators, i.e., strictly positive local martingales whose product with the price process stopped at a random time is a local martingale. The second principal result characterises the random times that preserve NUPBR under stopping for any quasi-left-continuous model. The analysis carried out in the paper is based on new stochastic developments in the theory of progressive enlargements of filtrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. A process \(S\) is quasi-left-continuous if it does not jump at predictable stopping times.

  2. We recall that \(\mathcal{E}(X)=\exp (X-\frac{1}{{2}}\langle X\rangle ^{\mathbb{H}})\), for any continuous ℍ-semimartingale \(X\).

References

  1. Acciaio, B., Fontana, C., Kardaras, C.: Arbitrage of the first kind and filtration enlargements in semimartingale financial models. Stoch. Process. Appl. 126, 1761–1784 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aksamit, A.: Random times, enlargement of filtration and arbitrages. Ph.D. Thesis, Université d’Evry-Val d’Essonne (2014). Available online at https://hal.archives-ouvertes.fr/tel-01016672/

  3. Aksamit, A., Choulli, T., Deng, J., Jeanblanc, M.: Arbitrages in a progressive enlargement setting. In: Hillairet, C., et al. (eds.) Arbitrage, Credit and Informational Risks. Peking Univ. Ser. Math., vol. 5, pp. 53–86. World Scientific, Hackensack (2014)

    Chapter  Google Scholar 

  4. Aksamit, A., Choulli, T., Jeanblanc, M.: On an optional semimartingale decomposition and the existence of a deflator in an enlarged filtration. In: Donati-Martin, C., et al. (eds.) In Memoriam Marc Yor—Séminaire de Probabilités XLVII. Lecture Notes in Math., vol. 2137, pp. 187–218. Springer, Cham (2015)

    Chapter  Google Scholar 

  5. Amendinger, J., Imkeller, P., Schweizer, M.: Additional logarithmic utility of an insider. Stoch. Process. Appl. 75, 263–286 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ansel, J.-P., Stricker, C.: Couverture des actifs contingents et prix maximum. Ann. Inst. Henri Poincaré Probab. Stat. 30, 303–315 (1994)

    MathSciNet  MATH  Google Scholar 

  7. Barbarin, J.: Valuation, hedging and the risk management of insurance contracts. Ph.D. Thesis, Catholic University of Louvain (2008). Available online at http://hdl.handle.net/2078.1/12686

  8. Becherer, D.: The numeraire portfolio for unbounded semimartingales. Finance Stoch. 5, 327–341 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Choulli, T., Aksamit, A., Deng, J., Jeanblanc, M.: Non-arbitrage up to random horizon and after honest times for semimartingale models. Working paper (2013). Available online at: https://arxiv.org/abs/1310.1142v1

  10. Choulli, T., Deng, J., Ma, J.: How non-arbitrage, viability and numéraire portfolio are related. Finance Stoch. 19, 719–741 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Choulli, T., Stricker, C., Li, J.: Minimal Hellinger martingale measures of order \(q\). Finance Stoch. 11, 399–427 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Christensen, M.M., Larsen, K.: No arbitrage and the growth optimal portfolio. Stoch. Anal. Appl. 25, 255–280 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Delbaen, F., Schachermayer, W.: A general version of the fundamental theorem of asset pricing. Math. Ann. 300, 463–520 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dellacherie, C., Maisonneuve, B., Meyer, P.-A.: Probabilités et Potentiel: Tome V, Processus de Markov (fin), Compléments de Calcul Stochastique, chapitres XVII à XXIV. Hermann, Paris (1992)

    Google Scholar 

  15. Dellacherie, C., Meyer, P.-A.: Probabilités et Potentiel. Chapitres I à IV, Édition entièrement refondue. Publications de l’Institut de Mathématique de l’Université de Strasbourg, no. XV, Actualités Scientifiques et Industrielles, vol. 1372. Hermann, Paris (1975)

    MATH  Google Scholar 

  16. Dellacherie, C., Meyer, P.-A.: Probabilités et Potentiel. Chapitres V à VIII, Théorie des Martingales. Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], vol. 1385. Hermann, Paris (1980). Revised edition

    MATH  Google Scholar 

  17. Deng, J.: Essays on Arbitrage Theory for a Class of Informational Markets. Ph.D. Thesis, University of Alberta (2014). Available online at: http://hdl.handle.net/10402/era.38797

  18. Fontana, C., Jeanblanc, M., Song, S.: On arbitrages arising with honest times. Finance Stoch. 18, 515–543 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Grorud, A., Pontier, M.: Insider trading in a continuous time market model. Int. J. Theor. Appl. Finance 1(03), 331–347 (1998)

    Article  MATH  Google Scholar 

  20. He, S.W., Wang, J.G., Yan, J.A.: Semimartingale Theory and Stochastic Calculus. Kexue Chubanshe (Science Press)/CRC Press, Beijing/Boca Raton (1992)

    MATH  Google Scholar 

  21. Hulley, H., Schweizer, M.: \(\text{M}^{6}\)—on minimal market models and minimal martingale measures. In: Chiarella, C., Novikov, A. (eds.) Contemporary Quantitative Finance: Essays in Honour of Eckhard Platen, pp. 35–51. Springer, Berlin (2010)

    Chapter  Google Scholar 

  22. Imkeller, P.: Random times at which insiders can have free lunches. Stoch. Stoch. Rep. 74, 465–487 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jacod, J.: Calcul Stochastique et Problèmes de Martingales. Lecture Notes in Mathematics, vol. 714. Springer, Berlin (1979)

    MATH  Google Scholar 

  24. Jacod, J., Shiryaev, A.N.: Limit Theorems for Stochastic Processes, 2nd edn. Grundlehren der Mathematischen Wissenschaften, vol. 288. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  25. Jeulin, T.: Semi-martingales et Grossissement d’une Filtration. Lecture Notes in Mathematics, vol. 833. Springer, Berlin (1980)

    Book  MATH  Google Scholar 

  26. Kabanov, Y.M.: On the FTAP of Kreps–Delbaen–Schachermayer. In: Kabanov, Y., et al. (eds.) Statistics and Control of Stochastic Processes, Moscow, 1995/1996, pp. 191–203. World Scientific, River Edge (1997)

    Chapter  Google Scholar 

  27. Karatzas, I., Kardaras, C.: The numéraire portfolio in semimartingale financial models. Finance Stoch. 11, 447–493 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kardaras, C.: A time before which insiders would not undertake risk. In: Kabanov, Y., et al. (eds.) Inspired by Finance. The Musiela Festschrift, pp. 349–362. Springer, Cham (2014)

    Chapter  Google Scholar 

  29. Kohatsu-Higa, A., Sulem, A.: Utility maximization in an insider influenced market. Math. Finance 16, 153–179 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Loewenstein, M., Willard, G.A.: Local martingales, arbitrage, and viability. Free snacks and cheap thrills. Econom. Theory 16, 135–161 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  31. Pikovsky, I., Karatzas, I.: Anticipative portfolio optimization. Adv. Appl. Probab. 28, 1095–1122 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  32. Platen, E.: A benchmark approach to finance. Math. Finance 16, 131–151 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ruf, J.: Hedging under arbitrage. Math. Finance 23, 297–317 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Song, S.: Local martingale deflators for asset processes stopped at a default time \(S^{\tau }\) or right before \(S^{\tau -}\). Working paper (2016). Available online at: https://arxiv.org/abs/1405.4474v4

  35. Takaoka, K., Schweizer, M.: A note on the condition of no unbounded profit with bounded risk. Finance Stoch. 18, 393–405 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Yor, M.: Grossissement d’une filtration et semi-martingales: théorèmes généraux. In: Dellacherie, C., et al. (eds.) Séminaire de Probabilités, XII. Lecture Notes in Math., vol. 649, pp. 61–69. Springer, Berlin (1978)

    Chapter  Google Scholar 

  37. Zwierz, J.: On existence of local martingale measures for insiders who can stop at honest times. Bull. Pol. Acad. Sci., Math. 55, 183–192 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research of Tahir Choulli and Jun Deng has been financially supported by the Natural Sciences and Engineering Research Council of Canada, through Grant RES0020459. The research of Anna Aksamit and Monique Jeanblanc has been supported by Chaire Markets in Transition, French Banking Federation, Institut Louis Bachelier et Labex ANR 11-LABX-0019. The research of Anna Aksamit has been additionally supported by the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 335421.

Tahir Choulli would like to thank Monique Jeanblanc and LaMME (Evry Val d’Essonne University), where this work started and was completed, for their hospitality and their welcome. All four authors are very grateful to Marek Rutkowski for his advice, comments/remarks, and numerous suggestions that helped improving the paper tremendously. The four authors are fully responsible for any possible errors.

The authors would like to thank two anonymous referees and Martin Schweizer for their comments and advice that helped improving a previous version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tahir Choulli.

Appendices

Appendix A: Deflator in terms of predictable characteristics

For undefined notations, we refer the reader to Sect. 5.1 (see also [23, Chapter III] and [24, Chapter 2]). Here, we consider an \((\mathbb{H}, Q)\)-semimartingale \(X\). We denote by \(\mu _{X}\) the random measure associated to the jumps of \(X\), and by \(\nu _{X}\) its \((\mathbb{H},Q)\)-compensator. Suppose that the canonical decomposition of the model \((X,\mathbb{H}, Q)\) takes the form

$$ X=X_{0}+X^{c}+h\star (\mu _{X}-\nu _{X})+b\hspace{0.5pt}{\mathbf{\cdot}}\hspace{0.5pt}A+(x-h)\star \mu _{X},$$

where \(h\) is the truncation function. This, by virtue of Sect. 5.1, is equivalent to saying that the predictable characteristics of this model are \((b,c,F,A)\). The elements of this quadruplet naturally depend on the model itself, and we write \(b^{X,\mathbb{H},Q}\) instead of \(b\) and so on. However, here we opt for simplified notations as there is no risk of confusion.

Theorem A.1

Consider the model \((X,\mathbb{H},Q)\) defined above with its predictable characteristics \((b,c,F,A)\). Then \((X,\mathbb{H},Q)\) satisfies NUPBR if and only if there exists a pair \((\beta , f)\) consisting of an ℍ-predictable process and a \(\widetilde{\mathcal{P}}(\mathbb{H})\)-measurable functional satisfying

$$\begin{aligned} &f>0 \quad Q\otimes \mu _{X}\textit{-a.e.},\quad \beta ^{\mathrm{tr}}c\beta \hspace{0.5pt}{\mathbf{\cdot}}\hspace{0.5pt}A+\sqrt{(f-1)^{2}\star \mu _{X}}\in {\mathcal{A}}^{+}_{\mathrm{loc}}(\mathbb{H},Q),\hskip1cm \end{aligned}$$
(A.1)
$$\begin{aligned} &\displaystyle \int \vert xf(x)-h(x)\vert F(dx)< +\infty \quad Q\otimes A\textit{-a.e.},\quad \textit{and} \end{aligned}$$
(A.2)
$$\begin{aligned} &b + c\beta + \displaystyle \int \Bigl(x f(x)- h(x)\Bigr)F(dx) = 0 \quad Q\otimes A\textit{-a.e.} \end{aligned}$$
(A.3)

Proof

This follows by combining Proposition 2.3 and [11, Lemma 2.4]. □

Appendix B: \(\mathbb{G}\)-localisation versus \(\mathbb{F}\)-localisation

We now present results which are important for the proofs of Sect. 5.3, and are the most innovative results of the appendix.

Lemma B.1

The following assertions hold:

(a) If \(H^{\mathbb{G}}\) is a \(\widetilde{\mathcal{P}}(\mathbb{G})\)-measurable functional, then there exist a \(\widetilde{\mathcal{P}}(\mathbb{F})\)-measurable functional \(H^{\mathbb{F}}\) and a \(\mathcal{B}(\mathbb{R}_{+})\otimes \widetilde{\mathcal{P}}(\mathbb{F})\)-measurable functional \(K^{\mathbb{F}}: {\mathbb{R}}_{+}\times \Omega \times {\mathbb{R}}_{+} \times {\mathbb{R}}^{d} \rightarrow \mathbb{R}\) such that

$$\begin{aligned} H^{\mathbb{G}}(\omega ,t,x) = H^{\mathbb{F}}(\omega ,t,x) I_{]\!]0,\tau [\![}+ K^{\mathbb{F}}\big(\tau (\omega ),\omega ,t,x\big)I_{[\![\tau ,+\infty ]\!]}. \end{aligned}$$

(b) If furthermore \(H^{\mathbb{G}}>0\) (respectively \(H^{\mathbb{G}}\leq 1\)), then we can choose \(H^{\mathbb{F}}>0\) (respectively \(H^{\mathbb{F}}\leq 1\)).

(c) If \(H^{\mathbb{G}}\) is an \(\widetilde{\mathcal{O}}(\mathbb{G})\)-measurable functional, then there exist an \(\widetilde{\mathcal{O}}(\mathbb{G})\)-measurable functional \(H^{(1)}(\omega ,t,x)\), a \(\widetilde{\mathrm{Prog}}(\mathbb{F})\)-measurable functional \(H^{(2)}(\omega ,t,x)\), and a \(\mathcal{B}(\mathbb{R}_{+})\otimes \widetilde{\mathcal{O}}(\mathbb{F})\)-measurable functional \(H^{(3)}(v,\omega ,t,x)\) such that

$$ H^{\mathbb{G}}(\omega ,t,x) = H^{(1)}(\omega ,t,x)I_{]\!]0,\tau ]\!]}+H^{(2)}(\omega ,t,x)I_{]\!]\tau [\![} +H^{(3)}\big(\tau (\omega ),\omega ,t,x\big)I_{[\![\tau ,+\infty ]\!]}. $$

If furthermore \(0< H^{\mathbb{G}}\) (respectively \(H^{\mathbb{G}}\leq 1\)), then all \(H^{(i)}\) can be chosen such that \(0< H^{(i)}\) (respectively \(H^{(i)}\leq 1\)), \(i=1,2,3\).

(d) For any \(\mathbb{F}\)-stopping time \(T\) and any positive \(\mathcal{G}_{T}\)-measurable random variable \(Y^{\mathbb{G}}\), there exist two positive \(\mathcal{F}_{T}\)-measurable random variables \(Y^{(1)}\) and \(Y^{(2)}\) satisfying

$$\begin{aligned} Y^{\mathbb{G}}I_{\{ T\leq \tau \}}=Y^{(1)}I_{\{T< \tau \}}+Y^{(2)}I_{\{\tau =T\}}. \end{aligned}$$

Proof

Both (a) and (c) follow directly from mimicking Jeulin (see [25, Lemma 4.4 (b) and Proposition 5.3 (b), respectively]), and their proofs are omitted. Assertion (d) follows easily from applying (c) to \(H^{\mathbb{G}}:=\ ^{o,\mathbb{G}}(Y^{\mathbb{G}})I_{]\!]0,\tau [\![}\) and \(H^{\mathbb{G}}_{T}=Y^{\mathbb{G}}I_{\{T\leq \tau \}}\). Thus the rest of this proof focuses on (b). Suppose that \(H^{\mathbb{G}}>0\) (resp. \(H^{\mathbb{G}}\leq 1\)). Then thanks to (a), there exists a \(\mathcal{B}(\mathbb{R}_{+})\otimes \widetilde{\mathcal{P}}(\mathbb{F})\)-measurable functional \(H'\) such that \(H^{\mathbb{G}}=H'\) on \(]\!]0,\tau [\![\). This implies that \(]\!]0,\tau [\![\subset \{H'>0\}\) (resp. \(]\!]0,\tau [\![\subset \{H'\leq 1\}\)). By considering \(H^{\mathbb{F}}=(H')^{+}+I_{\{H'\leq 0\}}\) (resp. \(H^{\mathbb{F}}=\min (1, H')\)), (b) follows immediately. □

Proposition B.2

Let \(\Phi _{\alpha }(\cdot )\) be given by (5.8). Then the following hold:

(a) Let \(f\) be a \({\widetilde{\mathcal{P}}(\mathbb{H})}\)-measurable functional. Then

$$\begin{aligned} \sqrt{(f-1)^{2}\star \mu } \in {\mathcal{A}}^{+}_{\mathrm{loc}}(\mathbb{H})\quad \textit{if and only if}\quad \Phi _{\alpha }(f)\star \mu \in {\mathcal{A}}^{+}_{\mathrm{loc}}(\mathbb{H}). \end{aligned}$$

(b) Let \((\sigma ^{\mathbb{G}}_{n})\) be a sequence of \(\mathbb{G}\)-stopping times that increases to \(+\infty \). Then there exists a nondecreasing sequence \((\sigma ^{\mathbb{F}}_{n})_{n\geq 1}\) of \(\mathbb{F}\)-stopping times satisfying

$$ \sigma ^{\mathbb{G}}_{n}\wedge \tau = \sigma ^{\mathbb{F}}_{n}\wedge \tau ,\quad \sigma _{\infty }^{\mathbb{F}}:=\sup _{n} \sigma ^{\mathbb{F}}_{n}\geq R\ \ P\textit{-a.s.}, $$
(B.1)

and

$$ Z_{\sigma _{\infty }^{\mathbb{F}}-}=0\quad P\textit{-a.s.} \quad \textit{on }\Sigma \cap \{\sigma _{\infty }^{\mathbb{F}}< +\infty \}, $$
(B.2)

where \(\Sigma :=\bigcap _{n\geq 1}\{\sigma _{n}^{\mathbb{F}}<\sigma _{\infty }^{\mathbb{F}}\}\) and \(R:=\inf \{t\geq 0: Z_{t}=0\}\).

(c) Let \(V\) be an \(\mathbb{F}\)-predictable nondecreasing process with values in \([0,+\infty ]\). Then \(V^{\tau }\in {\mathcal{A}}_{\mathrm{loc}}^{+}(\mathbb{G})\) if and only if \(I_{\{ Z_{-}\geq \delta \}} \hspace{0.5pt}{\mathbf{\cdot}}\hspace{0.5pt}V\in {\mathcal{A}}_{\mathrm{loc}}^{+}(\mathbb{F})\) for any \(\delta >0\).

(d) Let \(k\) be a nonnegative \(\widetilde{\mathcal{P}}(\mathbb{F})\)-measurable functional. Then \(kI_{[\![0,\tau [\![}\star \mu \in {\mathcal{A}}^{+}_{\mathrm{loc}}(\mathbb{G})\) if and only if for all \(\delta >0\), \(kI_{\{Z_{-}\geq \delta \}}\widetilde{Z}\star \mu \in {\mathcal{A}}^{+}_{\mathrm{loc}}(\mathbb{F})\) if and only if for any \(\delta >0\), \(kI_{\{Z_{-}\geq \delta \}}(Z_{-}+f_{m})\star \mu \in {\mathcal{A}}^{+}_{\mathrm{loc}}(\mathbb{F})\).

(e) Let \(f\) be a \(\widetilde{\mathcal{P}}(\mathbb{F})\)-measurable functional. Then the following are equivalent:

(e.1) \(\sqrt{(f-1)^{2}I_{[\![0,\tau [\![}\star \mu } \in {\mathcal{A}}^{+}_{\mathrm{loc}}(\mathbb{G})\).

(e.2) \(\Phi _{\alpha }(f)I_{\{Z_{-}\geq \delta \}}{\widetilde{Z}}\star \mu \in {\mathcal{A}}^{+}_{\mathrm{loc}}(\mathbb{F})\) for all \(\delta >0\).

(e.3) \(\Phi _{\alpha }(f)I_{\{Z_{-}\geq \delta \}}(Z_{-}+f_{m})\star \mu \in {\mathcal{A}}^{+}_{\mathrm{loc}}(\mathbb{F})\) for all \(\delta >0\).

(f) Let \(\phi ^{\mathbb{F}}\) be an \(\mathbb{F}\)-predictable process with values in \([0,+\infty ]\) such that \(P\otimes A\)-a.e., \([\![0,\tau [\![\subset \{\phi ^{\mathbb{F}}<+\infty \}\). Then \(P\otimes A\)-a.e., \(\{Z_{-}>0\}\subset \{\phi ^{\mathbb{F}}<+\infty \}\).

(g) Let \(\phi ^{\mathbb{F}}\) be an \(\mathbb{F}\)-predictable process with values in \([0,+\infty ]\) such that \(P\otimes A\)-a.e., \([\![0,\tau [\![\subset \{\phi ^{\mathbb{F}}=0\}\). Then \(P\otimes A\)-a.e., \(\{Z_{-}>0\}\subset \{\phi ^{\mathbb{F}}=0\}\).

Proof

(a) Put \(W:=(f-1)^{2}\star \mu = W_{1} + W_{2}\) with \(W_{1} := (f-1)^{2}I_{\{|f-1|\leq \alpha \}}\star \mu \), \(W_{2}:= (f-1)^{2}I_{\{|f-1|> \alpha \}}\star \mu \) and \(W_{2}' := |f-1|I_{\{|f-1|>\alpha \}}\star \mu \). Note that

$$\begin{aligned} \sqrt{W} =\sqrt{W_{1}+W_{2}}\leq \sqrt{W_{1}} + \sqrt{W_{2}} \leq \sqrt{W_{1}} + W_{2}'. \end{aligned}$$

Therefore \(\sqrt{W_{1}}, W_{2}' \in {\mathcal{A}}^{+}_{\mathrm{loc}}\) imply that \(\sqrt{W}\) is locally integrable. Conversely, if \(\sqrt{W}\in {\mathcal{A}}^{+}_{\mathrm{loc}}\), then \(\sqrt{W_{1}} \) and \(\sqrt{W_{2}}\) are both locally integrable. Since \(W_{1}\) is locally bounded and has finite variation, \(W_{1}\) is locally integrable. In the following, we focus on the proof of the local integrability of \(W_{2}'\). Denote

$$ \tau _{n} := \inf \{t\geq 0: V_{t} >n\}, \ \ V:=W_{2}. $$

It is easy to see that \((\tau _{n})\) increases to infinity and \(V_{-}\leq n\) on the set \([\![0,\tau _{n} [\![\). On the set \(\{\Delta V >0\}\), we have \(\Delta V \geq \alpha ^{2}\). By using the elementary inequality

$$\sqrt{1 + {n}/{\alpha ^{2}}} - \sqrt{{n}/{\alpha ^{2}}} \leq \sqrt{1 + x} - \sqrt{x} \leq 1$$

when \(0\leq x \leq {n}/{\alpha ^{2}}\), we have

$$\begin{aligned} \sqrt{V_{-} + \Delta V} - \sqrt{V_{-}} \geq \beta _{n} \sqrt{\Delta V}\qquad \text{on}\ [\![0,\tau _{n}[\![ \end{aligned}$$

and

$$\begin{aligned} (W_{2}')^{\tau _{n}} =& \left( \sum \sqrt{\Delta V}\right) ^{\tau _{n}} \leq \beta _{n}^{-1}\left( \sum \Delta \sqrt{ V}\right) ^{\tau _{n}} = \beta _{n}^{-1}\big(\sqrt{W_{2}}\big)^{\tau _{n}}\in {\mathcal{A}}^{+}_{\mathrm{loc}}(\mathbb{H}), \end{aligned}$$

where \(\beta _{n}:= \sqrt{1 + {n}/{\alpha ^{2}}} - \sqrt{{n}/{\alpha ^{2}}}\). Therefore \(W_{2}' \in (\mathcal{A}^{+}_{\mathrm{loc}}(\mathbb{H}))_{\mathrm{loc}}=\mathcal{A}^{+}_{\mathrm{loc}}(\mathbb{H})\).

(b) Due to [14, XX.75 b)], there exists a sequence of \(\mathbb{F}\)-stopping times \((\sigma _{n}^{\mathbb{F} })\) such that

$$\begin{aligned} \sigma _{n}^{\mathbb{G}}\wedge \tau = \sigma _{n}^{\mathbb{F}}\wedge \tau . \end{aligned}$$
(B.3)

By putting \(\sigma _{n}:= \sup _{k\leq n} \sigma _{k}^{\mathbb{F}}\), we prove that

$$\begin{aligned} \sigma _{n}^{\mathbb{G}}\wedge \tau = \sigma _{n}\wedge \tau , \end{aligned}$$
(B.4)

or equivalently that \(\{\sigma _{n}^{\mathbb{F}}\wedge \tau < \sigma _{n}\wedge \tau \}\) is negligible. Due to (B.3) and as \((\sigma _{n}^{\mathbb{G}})\) is nondecreasing, we get \(\{\sigma _{n}^{\mathbb{F}} < \tau \}= \{\sigma _{n}^{\mathbb{G}} < \tau \} \subset \bigcap _{i=1}^{n} \{\sigma _{i}^{\mathbb{G}} =\sigma _{i}^{\mathbb{F}}\} \subset \{\sigma _{n}^{\mathbb{F}}= \sigma _{n}\}\). This implies that \(\{\sigma _{n}^{\mathbb{F}}\wedge \tau < \sigma _{n}\wedge \tau \} = \{ \sigma _{n}^{\mathbb{F}} < \tau , \sigma _{n}^{\mathbb{F}}< \sigma _{n}\} =\emptyset \), and the proof of (B.4) is completed. Thus without loss of generality, we assume that the sequence \((\sigma _{n}^{\mathbb{F}})\) is nondecreasing. By taking limits in (B.3), we obtain \(\tau = \sigma _{\infty }^{\mathbb{F}} \wedge \tau \) \(P\)-a.s. which is equivalent to \(\sigma _{\infty }^{\mathbb{F}} \geq \tau \) \(P\)-a.s. Since \({R}\) is the smallest \(\mathbb{F}\)-stopping time dominating \(\tau \) a.s., we obtain \(\sigma _{\infty }^{\mathbb{F}} \geq {R} \geq \tau \) \(P\)-a.s. This completes the proof of (B.1).

On the set \(\Sigma \), it is easy to show that

$$\begin{aligned} I_{{[\![0,\sigma ^{\mathbb{F}}_{n} [\![} } \longrightarrow I_{{[\![0,\sigma ^{\mathbb{F}}_{\infty }]\!]} } \qquad \text{as }n \to +\infty . \end{aligned}$$

Then thanks again to (B.3), by taking \(\mathbb{F}\)-predictable projections and letting \(n\) go to \(+\infty \), we obtain

$$\begin{aligned} Z_{-} = Z_{-}I_{{[\![0,\sigma _{\infty }^{\mathbb{F}} ]\!]} } \quad \text{on }\Sigma . \end{aligned}$$

Hence (B.2) follows immediately, and the proof of (b) is completed.

(c) Suppose that \(V^{\tau }\in {\mathcal{A}^{+}_{\mathrm{loc}}}(\mathbb{G})\). Then there exists a sequence \((\sigma ^{\mathbb{G}}_{n})\) of \(\mathbb{G}\)-stopping times increasing to infinity such that \(V^{\tau \wedge \sigma ^{\mathbb{G}}_{n}}\in {\mathcal{A}^{+}}(\mathbb{G}) \). Consider a nondecreasing sequence \((\sigma _{n}^{\mathbb{F}})_{n\geq 1}\) of \(\mathbb{F}\)-stopping times satisfying (B.1) and (B.2) (its existence is guaranteed by (b)) and \(\sigma _{\infty }^{\mathbb{F}}:=\sup _{n} \sigma _{n}^{\mathbb{F}}\). Therefore, for any fixed \(\delta >0\),

$$\begin{aligned} W^{n}:=Z_{-} I_{\{Z_{-} \geq \delta \} }\hspace{0.5pt}{\mathbf{\cdot}}\hspace{0.5pt}V^{\sigma _{n}^{\mathbb{F}}} \in \mathcal{A}_{\mathrm{loc}}^{+}(\mathbb{F}), \end{aligned}$$

or, equivalently, this process is càdlàg predictable with finite values. Thus, it is obvious that proving that the \(\mathbb{F}\)-predictable and nondecreasing process

$$\begin{aligned} W:=I_{\{Z_{-} \geq \delta \} }\hspace{0.5pt}{\mathbf{\cdot}}\hspace{0.5pt}V\ \ \text{ is c\`{a}dl\`{a}g with finite values} \end{aligned}$$
(B.5)

is sufficient to prove its \(\mathbb{F}\)-local integrability. To prove (B.5), we consider the random time \(\tau ^{\delta }\) defined by

$$ \tau ^{\delta }:= \sup \{t\geq 0 : Z_{t-} \geq \delta \}. $$

Then it is clear that \(I_{[\![\tau ^{\delta },+\infty ]\!]}\hspace{0.5pt}{\mathbf{\cdot}}\hspace{0.5pt}W\equiv 0\) and \(P\)-a.s. on \(\{\tau ^{\delta }<+\infty \}\), we have

$$ \tau ^{\delta }\leq {R} \leq \sigma _{\infty }^{\mathbb{F}}\ \ \ \text{and}\ \ \ \ Z_{\tau ^{\delta }-} \geq \delta . $$

The proof of (B.5) will be achieved by considering the three sets \(\{\sigma _{\infty }^{\mathbb{F}} = \infty \}\), \(\Sigma \cap \{\sigma _{\infty }^{\mathbb{F}}<+\infty \}\) and \(\Sigma ^{c}\cap \{\sigma _{\infty }^{\mathbb{F}}<+\infty \}\). It is obvious that (B.5) holds on \(\{\sigma _{\infty }^{\mathbb{F}} = \infty \}\). From (B.2), we deduce that \(\tau ^{\delta }< \sigma _{\infty }^{\mathbb{F}}\) \(P\)-a.s. on \(\Sigma \cap \{\sigma _{\infty }^{\mathbb{F}}<+\infty \}\). Since \(W\) is supported on \([\![0, \tau ^{\delta }[\![\), (B.5) follows immediately on the set \(\Sigma \cap \{\sigma _{\infty }^{\mathbb{F}}<+\infty \}\). Finally, on the set

$$ \Sigma ^{c} \cap \{\sigma _{\infty }^{\mathbb{F}}< +\infty \} = \bigg(\bigcup _{n\geq 1} \{\sigma _{n}^{\mathbb{F}} = \sigma _{\infty }^{\mathbb{F}}\}\bigg) \cap \{\sigma _{\infty }^{\mathbb{F}}< +\infty \}, $$

the sequence \((\sigma _{n}^{\mathbb{F}})\) increases stationarily to \(\sigma _{\infty }^{\mathbb{F}}\), and thus (B.5) holds on this set. This completes the proof of (B.5), and hence \(I_{\{Z_{-} \geq \delta \} }Z_{-}\hspace{0.5pt}{\mathbf{\cdot}}\hspace{0.5pt}V\) is locally integrable for any \(\delta >0\).

Conversely, if \(I_{\{Z_{-}\geq \delta \}}\hspace{0.5pt}{\mathbf{\cdot}}\hspace{0.5pt}V \in {\mathcal{A}}^{+}_{\mathrm{loc}}(\mathbb{F}) \), there exists a sequence of \(\mathbb{F}\)-stopping times \((\tau _{n})_{n\geq 1}\) that increases to infinity and \((I_{\{Z_{-}\geq \delta \}}\hspace{0.5pt}{\mathbf{\cdot}}\hspace{0.5pt}V)^{\tau _{n}}\in {\mathcal{A}}^{+}(\mathbb{F}) \). Then

$$\begin{aligned} E\left[ I_{\{Z_{-}\geq \delta \}} I_{[\![0,\tau [\![}\hspace{0.5pt}{\mathbf{\cdot}}\hspace{0.5pt}V_{\tau _{n}}\right] =E\left[ I_{\{Z_{-}\geq \delta \}} Z_{-}\hspace{0.5pt}{\mathbf{\cdot}}\hspace{0.5pt}V_{\tau _{n}}\right] < +\infty . \end{aligned}$$

This proves that \(I_{\{Z_{-}\geq \delta \}} I_{[\![0,\tau [\![}\hspace{0.5pt}{\mathbf{\cdot}}\hspace{0.5pt}V\) is \(\mathbb{G}\)-locally integrable for any \(\delta >0\). Since \(Z_{-}^{-1}I_{[\![0,\tau [\![}\) is \(\mathbb{G}\)-locally bounded, there exists a family of \(\mathbb{G}\)-stopping times \((\tau _{\delta })_{\delta >0}\) that increases to infinity when \(\delta \) decreases to zero, and

$$ [\![0,\tau \wedge \tau _{\delta }[\![\subset \{Z_{-}\geq \delta \}.$$

This implies that the process \((I_{[\![0,\tau [\![}\hspace{0.5pt}{\mathbf{\cdot}}\hspace{0.5pt}V)^{\tau _{\delta }}\) is \(\mathbb{G}\)-locally integrable, and (c) follows.

(d) Let us first observe the easy fact that \(kI_{[\![0,\tau [\![}\star \mu \in {\mathcal{A}}^{+}_{\mathrm{loc}}(\mathbb{G})\) if and only if \(Z_{-}kI_{[\![0,\tau [\![}\star \nu ^{\mathbb{G}}= kI_{[\![0,\tau [\![}(Z_{-}+f_{m})\star \nu \in {\mathcal{A}}^{+}_{\mathrm{loc}}(\mathbb{G})\). By combining this fact with (c) applied to \(V:= k(Z_{-}+f_{m})I_{\{Z_{-}>0\}}\star \nu \), we deduce that \(kI_{[\![0,\tau [\![}\star \mu \in {\mathcal{A}}^{+}_{\mathrm{loc}}(\mathbb{G})\) if and only if \(k(Z_{-}+f_{m})I_{\{Z_{-}\geq \delta \}}\star \nu \in {\mathcal{A}}^{+}_{\mathrm{loc}}(\mathbb{F})\) for any \(\delta >0\), which is equivalent to \(k(Z_{-}+f_{m})I_{\{Z_{-}\geq \delta \}}\star \mu \in {\mathcal{A}}^{+}_{\mathrm{loc}}(\mathbb{F})\) for \(\delta >0\). The equivalence between \(k(Z_{-}+f_{m})I_{\{Z_{-}\geq \delta \}}\star \mu \in {\mathcal{A}}^{+}_{\mathrm{loc}}(\mathbb{F})\) and \(k{\widetilde{Z}}I_{\{Z_{-}\geq \delta \}}\star \mu \in {\mathcal{A}}^{+}_{\mathrm{loc}}(\mathbb{F})\) follows from

$$ E [k(Z_{-}+f_{m})I_{\{Z_{-}\geq \delta \}}\star \mu _{\sigma }]=E [k\widetilde{Z}I_{\{Z_{-}\geq \delta \}}\star \mu _{\sigma }], $$

for any \(\mathbb{F}\)-stopping time \(\sigma \). This ends the proof of (d).

(e) The proof of (e) follows from combining (a) and (d).

(f) Suppose that \([\![0,\tau [\![\subset \{\phi ^{\mathbb{F}}<+\infty \}\), or equivalently \(I_{[\![0,\tau [\![}\leq I_{\{\phi ^{\mathbb{F}}<+\infty \}}\). By taking \(\mathbb{F}\)-predictable projections on both sides, we get \(Z_{-}\leq I_{\{\phi ^{\mathbb{F}}<+\infty \}}\), and hence \(\{Z_{-}>0\}\subset \{\phi ^{\mathbb{F}}<+\infty \}\). This proves (f).

(g) Suppose that \(\phi ^{\mathbb{F}}I_{[\![0,\tau [\![}=0\) \(P\otimes A\)-a.e. Then by taking \(\mathbb{F}\)-predictable projections, we get \(\phi ^{\mathbb{F}}Z_{-}=0\) \(P\otimes A\)-a.e. This proves (f). □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aksamit, A., Choulli, T., Deng, J. et al. No-arbitrage up to random horizon for quasi-left-continuous models. Finance Stoch 21, 1103–1139 (2017). https://doi.org/10.1007/s00780-017-0337-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00780-017-0337-3

Keywords

Mathematics Subject Classification (2010)

JEL Classification

Navigation