Skip to main content

Advertisement

Log in

A time-adaptive fluid-structure interaction method for thermal coupling

  • Regular Article
  • Published:
Computing and Visualization in Science

Abstract

The thermal coupling of a fluid and a structure is of great significance for many industrial processes. As a model for cooling processes in heat treatment of steel we consider the surface coupling of the compressible Navier-Stokes equations bordering at one part of the surface with the heat equation in a solid region. The semi-discrete coupled system is solved using stiffly stable SDIRK methods of higher order, where on each stage a fluid-structure-coupling problem is solved. For the resulting method it is shown by numerical experiments that a second order convergence rate is obtained. This property is further used to implement a simple time-step control, which saves considerable computational time and, at the same time, guarantees a specified maximum error of time integration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Banke A.L.: Practical applications of CFD in heat processing. Heat Treat. Prog. 5, 44–49 (2005)

    Google Scholar 

  2. Bendiksen, O.: A new approach to computational aeroelasticity. AIAA Paper AIAA-91-0939-CP, 17, 120–1727 (1991)

  3. Bijl, H., Carpenter, M.H., Vatsa, V.N., Kennedy, C.A.: Implicit time integration schemes for the unsteady compressible navier-stokes equations: laminar flow. J. Comp. Phys. 179, 313–329 (2002)

    Google Scholar 

  4. Birken, P., Quint, K.J., Hartmann, S., Meister, A.: On coupling schemes for heat transfer in FSI applications. In: Hartmann, S., Meister, A., Schäfer, M., Turek, S. (eds.) Proceedings of the International Workshop on Fluid-Structure Interaction: Theory, Numerics and Applications Herrsching, 2009, pp. 21–30 (2009)

  5. Buchlin J.M.: Convective heat transfer and infrared thermography. J. Appl. Fluid Mech. 3, 55–62 (2010)

    Google Scholar 

  6. Davis, G.A., Bendiksen, O.O.: Transonic panel flutter. AIAA paper AIAA 93–1476 (1993)

  7. Diebels S., Ellsiepen P., Ehlers W.: Error-controlled Runge-Kutta time integration of a viscoplastic hybrid two-phases model. Technische Mechanik 19, 19–27 (1999)

    Google Scholar 

  8. Ellsiepen, P.: Zeits- und ortsadaptive Verfahren angewandt auf Mehrphasenprobleme poröser Medien. Dissertation, University of Stuttgart, Institute of Mechanics II (1999)

  9. Ellsiepen P., Hartmann S.: Remarks on the interpretation of current non-linear finite-element-analyses as differential-algebraic equations. Int. J. Numer. Meth. Eng. 51, 679–707 (2001)

    Article  MATH  Google Scholar 

  10. Farhat, C.: CFD-based nonlinear computational aeroelasticity. In: Stein, E., de Borst, R., Hughes, T.J. (eds.) Encyclopedia of Computational Mechanics, Volume 3: Fluids, pp. 459–480. John Wiley and Sons (2004)

  11. Gerhold, T., Friedrich, O., Evans, J., Galle, M.: Calculation of complex three-dimensional configurations employing the DLR-TAU-code. AIAA Paper 97–0167 (1997)

  12. Giles M.: Stability analysis of numerical interface conditions in fluid-structure thermal analysis. Int. J. Numer. Meth. Fluids 25, 421–436 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Guillard H., Farhat C.: On the significance of the geometric conservation law for flow computations on moving meshes. Comput. Meth. Appl. Mech. Engrg. 190, 1467–1482 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hairer E., Nørsett S., Wanner G.: Solving Ordinary Differential Equations I, Series in Computational Mathematics. Springer, Berlin (1987)

    Google Scholar 

  15. Hairer E., Wanner G.: Solving Ordinary Differential Equations II, Series in Computational Mathematics 14. 3rd edn. Springer, Berlin (2004)

    Google Scholar 

  16. Hartmann S.: A remark on the application of the Newton-Raphson method in non-linear finite element analysis. Comput. Mech. 36, 100–116 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hartmann, S.: TASA-FEM: Ein Finite-Elemente-Programm für raum-zeitadaptive Gekoppelte Strukturberechnungen Technical Report 1/2006. Institute of Mechanics, University of Kassel (2006)

  18. Hartmann S., Kuhl D., Quint K.J.: Time-adaptive computation of thermoviscoplastic structures. In: Steinhoff, K., Maier, H.J., Biermann, D. (eds) Functionally Graded Materials in Industrial Mass Production, chap. 3.1., pp. 269–282. Verlag Wissenschaftliche Scripten, Auerbach (Germany) (2009)

    Google Scholar 

  19. Heck U., Fritsching U., Bauckhage K.: Fluid flow and heat transfer in gas jet quenching of a cylinder. Int. J. Numer. Meth. Heat Fluid Flow 11, 36–49 (2001)

    Article  MATH  Google Scholar 

  20. Hinderks, M., Radespiel, R.: Investigation of hypersonic gap flow of a reentry nosecap with consideration of fluid structure interaction. AIAA Paper 06–1111 (2006)

  21. Huebner K.H., Dewhirst D.L., Smith D.E., Byrom T.G.: The Finite Element Methods for Engineers. John Wiley & Sons, New York (2001)

    Google Scholar 

  22. Lior N.: The cooling process in gas quenching. J. Mater. Process. Technol. 155(156), 1881–1888 (2004)

    Article  Google Scholar 

  23. Massjung R.: Discrete conservation and coupling strategies in nonlinear aeroelasticity. Comput. Meth. Appl. Mech. Engrg. 196(1–3), 91–102 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Matthies H.G., Niekamp R., Steindorf J.: Algorithms for strong coupling procedures. Comput. Meth. Appl. Mech. Engrg. 195, 2028–2049 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mehta, R.C.: Numerical computation of heat transfer on reentry capsules at mach 5. AIAA-Paper 2005–178 (2005)

  26. Meister A., Sonar T.: Finite-volume schemes for compressible fluid flow. Surv. Math. Ind. 8, 1–36 (1998)

    MathSciNet  MATH  Google Scholar 

  27. Quarteroni A., Valli A.: Domain Decomposition Methods for Partial Differential Equations. Oxford Science Publications, Oxford (1999)

    MATH  Google Scholar 

  28. Saba, B., Steinhoff, K.: Massivumformprodukte mit funktional gradierten Eigenschaften durch eine differenzielle thermo-mechanische Prozessführung. WT-Online pp. 745–752 (2007)

  29. Schüttenberg S., Hunkel M., Fritsching U., Zoch H.W.: Controlling of distortion by means of quenching in adapted jet fields. Materialwiss. Werkstofftech. 37, 92–96 (2006)

    Article  Google Scholar 

  30. Stratton P., Shedletsky I., Lee M.: Gas quenching with helium. Solid State Phenom. 118, 221–226 (2006)

    Article  Google Scholar 

  31. Van Driest, E.: National Advisory Commitee for Aeronautics (NACA)—investigation of laminar boundary layer in compressible fluids using the crocco method. NACA (1952)

  32. van Zuijlen A.H., Bijl H.: Implicit and explicit higher order time integration schemes for structural dynamics and fluid-structure interaction computations. Comput. Struct. 83, 93–105 (2005)

    Article  Google Scholar 

  33. van Zuijlen A.H., de Boer A., Bijl H.: Higher-order time integration through smooth mesh deformation for 3d fluid-structure interaction simulations. J. Comput. Phys. 224, 414–430 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wada, Y., Liou, M.S.: A flux splitting scheme with high-resolution and robustness for discontinuities. AIAA Paper 94–0083 (1994)

  35. Yarrington, P.W., Thornton, E.A.: Finite element analysis of low-speed compressible flows within convectively cooled structures. J. Thermophys. Heat Transf. 8–4, 678–686 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Birken.

Additional information

Communicated by Hans-Joachim Bungartz.

This work was supported by the German Science Foundation as part of the SFB/TR TRR 30.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Birken, P., Quint, K.J., Hartmann, S. et al. A time-adaptive fluid-structure interaction method for thermal coupling. Comput. Visual Sci. 13, 331–340 (2010). https://doi.org/10.1007/s00791-010-0150-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00791-010-0150-4

Keywords