Abstract
The thermal coupling of a fluid and a structure is of great significance for many industrial processes. As a model for cooling processes in heat treatment of steel we consider the surface coupling of the compressible Navier-Stokes equations bordering at one part of the surface with the heat equation in a solid region. The semi-discrete coupled system is solved using stiffly stable SDIRK methods of higher order, where on each stage a fluid-structure-coupling problem is solved. For the resulting method it is shown by numerical experiments that a second order convergence rate is obtained. This property is further used to implement a simple time-step control, which saves considerable computational time and, at the same time, guarantees a specified maximum error of time integration.
Similar content being viewed by others
References
Banke A.L.: Practical applications of CFD in heat processing. Heat Treat. Prog. 5, 44–49 (2005)
Bendiksen, O.: A new approach to computational aeroelasticity. AIAA Paper AIAA-91-0939-CP, 17, 120–1727 (1991)
Bijl, H., Carpenter, M.H., Vatsa, V.N., Kennedy, C.A.: Implicit time integration schemes for the unsteady compressible navier-stokes equations: laminar flow. J. Comp. Phys. 179, 313–329 (2002)
Birken, P., Quint, K.J., Hartmann, S., Meister, A.: On coupling schemes for heat transfer in FSI applications. In: Hartmann, S., Meister, A., Schäfer, M., Turek, S. (eds.) Proceedings of the International Workshop on Fluid-Structure Interaction: Theory, Numerics and Applications Herrsching, 2009, pp. 21–30 (2009)
Buchlin J.M.: Convective heat transfer and infrared thermography. J. Appl. Fluid Mech. 3, 55–62 (2010)
Davis, G.A., Bendiksen, O.O.: Transonic panel flutter. AIAA paper AIAA 93–1476 (1993)
Diebels S., Ellsiepen P., Ehlers W.: Error-controlled Runge-Kutta time integration of a viscoplastic hybrid two-phases model. Technische Mechanik 19, 19–27 (1999)
Ellsiepen, P.: Zeits- und ortsadaptive Verfahren angewandt auf Mehrphasenprobleme poröser Medien. Dissertation, University of Stuttgart, Institute of Mechanics II (1999)
Ellsiepen P., Hartmann S.: Remarks on the interpretation of current non-linear finite-element-analyses as differential-algebraic equations. Int. J. Numer. Meth. Eng. 51, 679–707 (2001)
Farhat, C.: CFD-based nonlinear computational aeroelasticity. In: Stein, E., de Borst, R., Hughes, T.J. (eds.) Encyclopedia of Computational Mechanics, Volume 3: Fluids, pp. 459–480. John Wiley and Sons (2004)
Gerhold, T., Friedrich, O., Evans, J., Galle, M.: Calculation of complex three-dimensional configurations employing the DLR-TAU-code. AIAA Paper 97–0167 (1997)
Giles M.: Stability analysis of numerical interface conditions in fluid-structure thermal analysis. Int. J. Numer. Meth. Fluids 25, 421–436 (1997)
Guillard H., Farhat C.: On the significance of the geometric conservation law for flow computations on moving meshes. Comput. Meth. Appl. Mech. Engrg. 190, 1467–1482 (2000)
Hairer E., Nørsett S., Wanner G.: Solving Ordinary Differential Equations I, Series in Computational Mathematics. Springer, Berlin (1987)
Hairer E., Wanner G.: Solving Ordinary Differential Equations II, Series in Computational Mathematics 14. 3rd edn. Springer, Berlin (2004)
Hartmann S.: A remark on the application of the Newton-Raphson method in non-linear finite element analysis. Comput. Mech. 36, 100–116 (2005)
Hartmann, S.: TASA-FEM: Ein Finite-Elemente-Programm für raum-zeitadaptive Gekoppelte Strukturberechnungen Technical Report 1/2006. Institute of Mechanics, University of Kassel (2006)
Hartmann S., Kuhl D., Quint K.J.: Time-adaptive computation of thermoviscoplastic structures. In: Steinhoff, K., Maier, H.J., Biermann, D. (eds) Functionally Graded Materials in Industrial Mass Production, chap. 3.1., pp. 269–282. Verlag Wissenschaftliche Scripten, Auerbach (Germany) (2009)
Heck U., Fritsching U., Bauckhage K.: Fluid flow and heat transfer in gas jet quenching of a cylinder. Int. J. Numer. Meth. Heat Fluid Flow 11, 36–49 (2001)
Hinderks, M., Radespiel, R.: Investigation of hypersonic gap flow of a reentry nosecap with consideration of fluid structure interaction. AIAA Paper 06–1111 (2006)
Huebner K.H., Dewhirst D.L., Smith D.E., Byrom T.G.: The Finite Element Methods for Engineers. John Wiley & Sons, New York (2001)
Lior N.: The cooling process in gas quenching. J. Mater. Process. Technol. 155(156), 1881–1888 (2004)
Massjung R.: Discrete conservation and coupling strategies in nonlinear aeroelasticity. Comput. Meth. Appl. Mech. Engrg. 196(1–3), 91–102 (2006)
Matthies H.G., Niekamp R., Steindorf J.: Algorithms for strong coupling procedures. Comput. Meth. Appl. Mech. Engrg. 195, 2028–2049 (2006)
Mehta, R.C.: Numerical computation of heat transfer on reentry capsules at mach 5. AIAA-Paper 2005–178 (2005)
Meister A., Sonar T.: Finite-volume schemes for compressible fluid flow. Surv. Math. Ind. 8, 1–36 (1998)
Quarteroni A., Valli A.: Domain Decomposition Methods for Partial Differential Equations. Oxford Science Publications, Oxford (1999)
Saba, B., Steinhoff, K.: Massivumformprodukte mit funktional gradierten Eigenschaften durch eine differenzielle thermo-mechanische Prozessführung. WT-Online pp. 745–752 (2007)
Schüttenberg S., Hunkel M., Fritsching U., Zoch H.W.: Controlling of distortion by means of quenching in adapted jet fields. Materialwiss. Werkstofftech. 37, 92–96 (2006)
Stratton P., Shedletsky I., Lee M.: Gas quenching with helium. Solid State Phenom. 118, 221–226 (2006)
Van Driest, E.: National Advisory Commitee for Aeronautics (NACA)—investigation of laminar boundary layer in compressible fluids using the crocco method. NACA (1952)
van Zuijlen A.H., Bijl H.: Implicit and explicit higher order time integration schemes for structural dynamics and fluid-structure interaction computations. Comput. Struct. 83, 93–105 (2005)
van Zuijlen A.H., de Boer A., Bijl H.: Higher-order time integration through smooth mesh deformation for 3d fluid-structure interaction simulations. J. Comput. Phys. 224, 414–430 (2007)
Wada, Y., Liou, M.S.: A flux splitting scheme with high-resolution and robustness for discontinuities. AIAA Paper 94–0083 (1994)
Yarrington, P.W., Thornton, E.A.: Finite element analysis of low-speed compressible flows within convectively cooled structures. J. Thermophys. Heat Transf. 8–4, 678–686 (1994)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Hans-Joachim Bungartz.
This work was supported by the German Science Foundation as part of the SFB/TR TRR 30.
Rights and permissions
About this article
Cite this article
Birken, P., Quint, K.J., Hartmann, S. et al. A time-adaptive fluid-structure interaction method for thermal coupling. Comput. Visual Sci. 13, 331–340 (2010). https://doi.org/10.1007/s00791-010-0150-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00791-010-0150-4