Abstract
In this paper, we present some analysis and numerical studies on two partitioned fluid-structure interaction solvers: a preconditioned GMRES solver and a Newton based solver, for the fluid-structure interaction problems employing a nearly incompressible elasticity model in a classical mixed displacement-pressure formulation. Both are highly relying on robust and efficient solvers for the fluid and structure sub-problems obtained from an extended and stabilized finite element discretization on hybrid meshes. A special algebraic multigrid method capable of handling such general saddle point systems for the incompressible and nearly incompressible models is investigated.
Similar content being viewed by others
References
Adams R.A., Fournier J.J.F.: Sobolev Spaces Pure and Applied Mathematics, vol. 140. Academic Press Amsterdam, Boston (2003)
Badia S., Nobile F., Vergara C.: Fluid-structure partitioned procedures based on Robin transmission conditions. J. Comput. Phys. 227, 7027–7051 (2008)
Badia S., Nobile F., Vergara C.: Robin-Robin preconditioned Krylov methods for fluid-structure interaction problems. Comput. Methods Appl. Mech. Eng. 198, 1768–2784 (2009)
Braess D.: Finite Elements Theory Fast Solvers and Applications in Solid Mechanics. Springer, Berlin (2001)
Braess D., Sarazin R.: An efficient smoother for the Stokes problem. Appl. Numer. Math. 23, 3–19 (1997)
Brezzi F., Fortin M.: Mixed and Hybrid Finite Element Methods Springer Series in Computational Mathematics. Springer, New York (1991)
Deparis S., Discacciati M., Fourestey G., Quarteroni A.: Fluid-structure algorithms based on Steklov–Poincaré operators. Comput. Methods Appl. Mech. Eng. 195, 5797–5812 (2006)
Fernández M.A., Moubachir M.: A Newton method using exact Jacobians for solving fluid-structure coupling. Comput. & Struct. 83(2–3), 127–142 (2005)
Formaggia L., Nobile F.: A stability analysis for the arbitrary Lagrangian Eulerian formulation with finite elements. East-West J. Numer. Math. 7, 105–132 (1999)
Franca L.P., Stenberg R.: Error analysis of some Galerkin least square methods for the elasticity equations. SIAM J. Numer. Anal. 28(6), 1680–1697 (1991)
Girault V., Raviart P.: Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms. Springer, New York (1985)
Griebel M., Oeltz D., Schweitzer M.A.: An algebraic multigrid method for linear elasticity. SIAM. J. Sci. Comput. 25, 385–407 (2003)
Kickinger, F.: Website. http://www.meshing.org/
Kickinger, F.: Algebraic multigrid for discrete elliptic second-order problems. In: Hackbush, W. (ed.) Multigrid Methods V. Proceedings of the 5th European Multigrid Conference Lecture Notes in Computational Sciences and Engineering, vol. 3, pp. 157–172. Springer, Berlin (1998)
Langer, U., Yang, H., Zulehner, W.: Numerical simulation of fluid-structure interaction problems on the grid environment. In: Volkert, J., Fahringer, T., Kranzlmüller, D., Kobler, R. Schreiner, W. (eds.) Proceedings of 3rd Austria Grid Symposium, pp. 13–27. OCG Publisher, Vienna (2010)
Ruge, J.W., Stüben, K.: Algebraic multigrid. In: McCormick, S.F. (ed.) Multigrid Methods, Frontiers in Applied Mathematics, vol. 3, pp. 73–130. SIAM, Philadelphia (1987)
Saad Y., Schultz M.H.: Gmres: a generalized minimal residual algorithm for solving nonsymmetric linear system. SIAM J. Sci. Stat. Comput. 7, 856–869 (1986)
Verfürth R.: Error estimates for a mixed finite element approximation of the Stokes equations. R.A.I.R.O. Num. Anal. 18(2), 175–182 (1984)
Wabro, M.: Algebraic Multigrid Methods for the Numerical Solution of the Incompressible Navier-Stokes Equations. Ph.D. thesis, Johannes Kepler University Linz (2003)
Wabro M.: Coupled algebraic multigrid methods for the Oseen problem. Comput. Vis. Sci. 7, 141–151 (2004)
Wabro M.: AMGe—coarsening strategies and application to the Oseen equations. SIAM J. Sci. Comput. 27, 2077–2097 (2006)
Wohlmuth B.: Discretization Methods and Iterative Solvers Based on Domain Decomposition. Springer, Berlin (2001)
Wohlmuth B.: A mortar finite element method using dual spaces for the lagrange multiplier. SIAM J. Numer. Anal. 38(3), 989–1012 (2001)
Yang, H.: Numerical Simulation of Fluid-Structure Interaction Problems on Hybrid Meshes with Algebraic Multigrid Methods. Ph.D. thesis, Johannes Kepler University Linz (2010)
Yang, H.: A Numerical Study on a Preconditioned GMRES Solver with Algebraic Multigrid Accelerations for the Fluid-Structure Interaction Problems on Hybrid Meshes. Technical Report 2011-15, RICAM. Submitted (2011)
Yang, H.: Two finite element methods on hybrid meshes and their applications to the fluid-structure interaction problems. Technical Report 2011-24, RICAM (2011)
Yang H., Zulehner W.: Numerical simulation of fluid-structure interaction problems on hybrid meshes with algebraic multigrid methods. J. Comput. Appl. Math. 235, 5367–5379 (2011)
Zulehner W.: A class of smoothers for saddle point problems. Computing 65, 227–246 (2000)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by: Gabriel Wittum.
Rights and permissions
About this article
Cite this article
Yang, H. Partitioned solvers for the fluid-structure interaction problems with a nearly incompressible elasticity model. Comput. Visual Sci. 14, 227–247 (2011). https://doi.org/10.1007/s00791-012-0177-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00791-012-0177-9
Keywords
- Fluid-structure interaction
- Robin-Robin/Neumann preconditioned GMRES
- Newton based solver
- Algebraic multigrid methods
- Extended P 1 element on hybrid meshes
- Mixed displacement/velocity-pressure formulation
- Nearly incompressible elasticity