Skip to main content
Log in

Partitioned solvers for the fluid-structure interaction problems with a nearly incompressible elasticity model

  • Published:
Computing and Visualization in Science

Abstract

In this paper, we present some analysis and numerical studies on two partitioned fluid-structure interaction solvers: a preconditioned GMRES solver and a Newton based solver, for the fluid-structure interaction problems employing a nearly incompressible elasticity model in a classical mixed displacement-pressure formulation. Both are highly relying on robust and efficient solvers for the fluid and structure sub-problems obtained from an extended and stabilized finite element discretization on hybrid meshes. A special algebraic multigrid method capable of handling such general saddle point systems for the incompressible and nearly incompressible models is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams R.A., Fournier J.J.F.: Sobolev Spaces Pure and Applied Mathematics, vol. 140. Academic Press Amsterdam, Boston (2003)

    Google Scholar 

  2. Badia S., Nobile F., Vergara C.: Fluid-structure partitioned procedures based on Robin transmission conditions. J. Comput. Phys. 227, 7027–7051 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Badia S., Nobile F., Vergara C.: Robin-Robin preconditioned Krylov methods for fluid-structure interaction problems. Comput. Methods Appl. Mech. Eng. 198, 1768–2784 (2009)

    Article  MathSciNet  Google Scholar 

  4. Braess D.: Finite Elements Theory Fast Solvers and Applications in Solid Mechanics. Springer, Berlin (2001)

    MATH  Google Scholar 

  5. Braess D., Sarazin R.: An efficient smoother for the Stokes problem. Appl. Numer. Math. 23, 3–19 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brezzi F., Fortin M.: Mixed and Hybrid Finite Element Methods Springer Series in Computational Mathematics. Springer, New York (1991)

    Book  Google Scholar 

  7. Deparis S., Discacciati M., Fourestey G., Quarteroni A.: Fluid-structure algorithms based on Steklov–Poincaré operators. Comput. Methods Appl. Mech. Eng. 195, 5797–5812 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fernández M.A., Moubachir M.: A Newton method using exact Jacobians for solving fluid-structure coupling. Comput. & Struct. 83(2–3), 127–142 (2005)

    Article  Google Scholar 

  9. Formaggia L., Nobile F.: A stability analysis for the arbitrary Lagrangian Eulerian formulation with finite elements. East-West J. Numer. Math. 7, 105–132 (1999)

    MathSciNet  MATH  Google Scholar 

  10. Franca L.P., Stenberg R.: Error analysis of some Galerkin least square methods for the elasticity equations. SIAM J. Numer. Anal. 28(6), 1680–1697 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  11. Girault V., Raviart P.: Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms. Springer, New York (1985)

    Google Scholar 

  12. Griebel M., Oeltz D., Schweitzer M.A.: An algebraic multigrid method for linear elasticity. SIAM. J. Sci. Comput. 25, 385–407 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kickinger, F.: Website. http://www.meshing.org/

  14. Kickinger, F.: Algebraic multigrid for discrete elliptic second-order problems. In: Hackbush, W. (ed.) Multigrid Methods V. Proceedings of the 5th European Multigrid Conference Lecture Notes in Computational Sciences and Engineering, vol. 3, pp. 157–172. Springer, Berlin (1998)

  15. Langer, U., Yang, H., Zulehner, W.: Numerical simulation of fluid-structure interaction problems on the grid environment. In: Volkert, J., Fahringer, T., Kranzlmüller, D., Kobler, R. Schreiner, W. (eds.) Proceedings of 3rd Austria Grid Symposium, pp. 13–27. OCG Publisher, Vienna (2010)

  16. Ruge, J.W., Stüben, K.: Algebraic multigrid. In: McCormick, S.F. (ed.) Multigrid Methods, Frontiers in Applied Mathematics, vol. 3, pp. 73–130. SIAM, Philadelphia (1987)

  17. Saad Y., Schultz M.H.: Gmres: a generalized minimal residual algorithm for solving nonsymmetric linear system. SIAM J. Sci. Stat. Comput. 7, 856–869 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  18. Verfürth R.: Error estimates for a mixed finite element approximation of the Stokes equations. R.A.I.R.O. Num. Anal. 18(2), 175–182 (1984)

    MATH  Google Scholar 

  19. Wabro, M.: Algebraic Multigrid Methods for the Numerical Solution of the Incompressible Navier-Stokes Equations. Ph.D. thesis, Johannes Kepler University Linz (2003)

  20. Wabro M.: Coupled algebraic multigrid methods for the Oseen problem. Comput. Vis. Sci. 7, 141–151 (2004)

    MathSciNet  MATH  Google Scholar 

  21. Wabro M.: AMGe—coarsening strategies and application to the Oseen equations. SIAM J. Sci. Comput. 27, 2077–2097 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wohlmuth B.: Discretization Methods and Iterative Solvers Based on Domain Decomposition. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  23. Wohlmuth B.: A mortar finite element method using dual spaces for the lagrange multiplier. SIAM J. Numer. Anal. 38(3), 989–1012 (2001)

    Article  MathSciNet  Google Scholar 

  24. Yang, H.: Numerical Simulation of Fluid-Structure Interaction Problems on Hybrid Meshes with Algebraic Multigrid Methods. Ph.D. thesis, Johannes Kepler University Linz (2010)

  25. Yang, H.: A Numerical Study on a Preconditioned GMRES Solver with Algebraic Multigrid Accelerations for the Fluid-Structure Interaction Problems on Hybrid Meshes. Technical Report 2011-15, RICAM. Submitted (2011)

  26. Yang, H.: Two finite element methods on hybrid meshes and their applications to the fluid-structure interaction problems. Technical Report 2011-24, RICAM (2011)

  27. Yang H., Zulehner W.: Numerical simulation of fluid-structure interaction problems on hybrid meshes with algebraic multigrid methods. J. Comput. Appl. Math. 235, 5367–5379 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zulehner W.: A class of smoothers for saddle point problems. Computing 65, 227–246 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huidong Yang.

Additional information

Communicated by: Gabriel Wittum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, H. Partitioned solvers for the fluid-structure interaction problems with a nearly incompressible elasticity model. Comput. Visual Sci. 14, 227–247 (2011). https://doi.org/10.1007/s00791-012-0177-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00791-012-0177-9

Keywords

Mathematics Subject Classification