Abstract
This work presents an extension of grid generation techniques for finite-volume discretizations of density-driven flow in fractured porous media, in which fractures are considered as low-dimensional manifolds and are resolved by sides of grid elements. The proposed technique introduces additional degrees of freedom for the unknowns assigned to the fractures and thus allows to reconstruct jumps of the solution over a fracture. Through the concept of degenerated elements, the proposed technique can be used for arbitrary junctions of fractures but is sufficiently simple regarding the implementation and allows for the application of conventional numerical solvers. Numerical experiments presented at the end of the paper demonstrate the applicability of this technique in two and three dimensions for complicated fracture networks.
















Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Alliez, P., Ucelli, G., Gotsman, C., Attene, M.: Recent advances in remeshing of surfaces. In: De Floriani, L., Spagnuolo, M. (eds.) Shape Analysis and Structuring, pp. 53–82. Springer, Berlin (2008)
Angot, P., Boyer, F., Hubert, F.: Asymptotic and numerical modelling of flow in fractured porous media. ESAIM: M2AN. Math. Model. Numer. Anal. 43(2), 239–275 (2009). doi:10.1051/m2an/2008052
Barrett, R., Berry, M., Chan, T.F., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C., van der Vorst, H.: Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. SIAM, Philadelphia, PA (1993)
Bastian, P., Birken, K., Johannsen, K., Lang, S., Reichenberger, V., Wieners, C., Wittum, G., Wrobel, C.: Parallel solution of partial differential equations with adaptive multigrid methods on unstructured grids. In: Jäger, W., Krause, E. (eds.) High Performance Computing in Science and Engineering, pp. 506–519. Springer, Berlin (2000)
Bastian, P., Chen, Z., Ewing, R.E., Helmig, R., Jakobs, H., Reichenberger, V.: Numerical simulation of multiphase flow in fractured porous media. In: Chen, Z., et al. (eds.) Numerical Treatment of Multiphase Flows in Porous Media. Proceedings of the International Workshop, Beijing, China, August 2–6, 1999, Lect. Notes Phys., vol. 552, pp. 50–68. Springer, Berlin (2000)
Bear, J.: Hydraulics of Groundwater. Dover, Mineola (1979)
Bear, J., Tsang, C.F., deMarsily, G.: Flow and Contaminant Transport in Fractured Rocks. Academic Press, New York (1993)
Bentley, J.L.: Multidimensional binary search trees used for associative searching. ACM Commun. 18(9), 509–517 (1975). doi:10.1145/361002.361007
Bockgård, N., Vidstrand, P., Åkesson, M.: Modelling the Interaction Between Engineered and Natural Barriers—An Assessment of a Fractured Bedrock Description in the Wetting Process of Bentonite at Deposition Tunnel Scale. Tech. Rep. Rev. 2011–02-23, Technical Committee of Task 8, Svensk Kärnbränslehantering AB (SKB), Stockholm (2011)
Cai, Z.: On the finite volume element method. Numer. Math. 58(1), 713–735 (1990)
Chew, L.P.: Constrained delaunay triangulations. Algorithmica 4(1), 97–108 (1989)
Fein, E.: Ein Programmpaket zur Modellierung von Dichteströmungen. GRS, Braunschweig 139 (1999). In German.
Frey, P., Borouchaki, H.: Geometric surface mesh optimization. Comput. Vis. Sci. 1(3), 113–121 (1998)
Frolkovič, P.: Consistent velocity approximation for density driven flow and transport. In: Van Keer, R., et al. (eds.) Advanced Computational Methods in Engineering Part 2 Contributed papers, pp. 603–611. Shaker Publishing, Maastricht (1998)
Frolkovič, P.: Maximum principle and local mass balance for numerical solutions of transport equation coupled with variable density flow. Acta Mathematica Universitatis Comenianae 1(68), 137–157 (1998)
Frolkovič, P., Knabner, P.: Consistent velocity approximations in finite element or volume discretizations of density driven flow. In: Aldama, A.A., et al. (eds.) Computational Methods in Water Resources XI, pp. 93–100. Computational Mechanics Publication, Southhampten (1996)
Fuchs, A.: Almost regular triangulations of trimmend nurbs-solids. Eng. Comput. 17(1), 55–65 (2001)
Fumagalli, A., Scotti, A.: Numerical modelling of multiphase subsurface flow in the presence of fractures. Commun. Appl. Ind. Math. 3(1) (2012). doi:10.1685/journal.caim.380
Graf, T., Therrien, R.: Variable-density groundwater flow and solute transport in porous media containing nonuniform discrete fractures. Adv. Water Resour. 28(12), 1351–1367 (2005)
Graf, T., Therrien, R.: Stable-unstable flow of geothermal fluids in fractured rock. Geofluids 9(2), 138–152 (2009)
Grillo, A., Lampe, M., Logashenko, D., Stichel, S., Wittum, G.: Simulation of salinity- and thermohaline-driven flow in fractured porous media. J. Porous Media 15(5), 439–458 (2012). doi:10.1615/JPorMedia.v15.i5.40
Grillo, A., Logashenko, D., Stichel, S., Wittum, G.: Simulation of density-driven flow in fractured porous media. Adv. Water Resour. 33(12), 1494–1507 (2010). doi:10.1016/j.advwatres.2010.08.004
Hackbusch, W.: Iterative Solution of Large Sparse Systems of Equations. Springer, New-York (1994)
Hansen, G., Douglass, R., Zardecki, A.: Mesh Enhancement: Selected Elliptic Methods, Foundations and Applications. Imperial College Pr, London (2005)
Henry, H.R.: Effects of dispersion on salt encroachment in coastal aquifers. In: Sea Water in Coastal Aquifers, pp. 70–84. USGS Water Supply Paper 1613-c (1964)
Hoppe, H.: Progressive meshes. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’96, pp. 99–108. ACM (1996)
Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Mesh optimization. In: Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques, pp. 19–26. ACM (1993)
Johannsen, K., Kinzelbach, W., Oswald, S., Wittum, G.: The saltpool benchmark problem—numerical simulation of saltwater upconing in a porous medium. Adv. Water Resour. 25(3), 335–348 (2002)
Karimian, S.M., Schneider, G.E.: Pressure-based control-volume finite element method for flow at all speeds. AIAA J. 33(9), 1611–1618 (1995)
Kröhn, K.P.: Qualifying a computer program for simulating fracture flow. Comput. Vis. Sci. 15(1), 29–37 (2012). doi: 10.1007/s00791-013-0191-6
Lang, S., Wittum, G.: Large-scale density-driven flow simulations using parallel unstructured grid adaptation and local multigrid methods. Concurr. Comput.: Pract. Exper. 17(11), 1415–1440 (2005)
Malkovsky, V.I., Pek, A.A.: Conditions for the onset of thermal convection of a homogeneous fluid in a vertical fault. Petrology 5, 381–387 (1997)
Martinez-Landa, L., Carrera, J.: A methodology to interpret cross-hole tests in a granite block. J. Hydrogeol. 325(1–4), 222–240 (2006)
Maryška, J., Severýn, O., Tauchman, M., Tondr, D.: Modelling of processes in fractured rock using fem/fvm on multidimensional domains. J. Comput. Appl. Math. 215(2), 495–502 (2008). doi:10.1016/j.cam.2006.04.074
Moore, M., Wilhelms, J.: Collision detection and response for computer animation. SIGGRAPH Comput. Graph. 22(4), 289–298 (1988). doi:10.1145/378456.378528
Murphy, H.D.: Convective instabilities in vertical fractures and faults. J. Geophys. Res. 84(11), 6121–6130 (1979)
Neumann, S.: Trends, prospects and challenges in quantifying flow and transport through fractured rocks. Hydrogeol. J. 13(1), 124–147 (2005)
Oldenburg, C.M., Pruess, K.: Layered thermohaline convection in hypersaline geothermal systems. Transp. Porous Media 33(1–2), 29–63 (1998)
Reiter, S., Logashenko, D., Stichel, S., Wittum, G., Grillo, A.: Models and simulations of variable-density flow in fractured porous media. Int. J. Comput. Sci. Eng. (2013) (in press)
Reiter, S., Wittum, G.: Promesh—A Flexible Interactive Meshing Software for Unstructured Hybrid Grids in 1, 2 and 3 Dimensions. (in preparation) (2013)
Schneider, A.: Enhancement of d3f und r3t (e-dur). fkz 02 e 10336 (bmwi), final report. Tech. rep., Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH, GRS-292, Braunschweig (2012)
Sharp, J.M.J., Shi, M.: Heterogeneity effects on possible salinity-driven free convection in low-permeability strata. Geofluids 34, 263–274 (2009)
Shewchuk, J.R.: Constrained delaunay tetrahedralizations and provably good boundary recovery. In: Proceedings of the 11th International Meshing Roundtable, pp. 193–204 (2002)
Shikaze, S.G., Sudicky, E.A., Schwartz, F.W.: Density-dependent solute transport in discretely-fractured geologic media: is prediction possible? J. Contam. Hydrogeol. 34(10), 273–291 (1998)
Si, H.: TetGen—A Quality Tetrahedral Mesh Generator and Three-Dimensional Delaunay Triangulator. http://wias-berlin.de/software/tetgen/files/tetgen-manual.pdf
Si, H., Gärtner, K.: Meshing piecewise linear complexes by constrained delaunay tetrahedralizations. In: Proceedings of the 14th International Meshing Roundtable, pp. 147–163. Springer, Berlin (2005)
Simpson, M., Clement, T.: Improving the worthiness of the Henry problem as a benchmark for density-dependent groundwater flow models. Water Resour. Res. 40, W01504 (2004). doi:10.1029/2003WR002199
Sorek, S., Borisov, V., Yakirevich, A.: A two-dimensional areal model for density dependent flow regime. Transp. Porous Media 43(1), 87–105 (2001)
Stichel, S., Logashenko, D., Grillo, A., Reiter, S., Lampe, M., Wittum, G.: Numerical methods for flow in fractured porous media. In: Delgado, J. (ed.) Heat and Mass Transfer in Porous Media, Advanced Structured Materials, vol. 13, pp. 83–113. Springer, Berlin (2012). doi:10.1007/978-3-642-21966-5_4
Acknowledgments
We thank Walter Steininger (PTkA-WTE, Karlsruhe, Germany), Klaus-Peter Kröhn and Anke Schneider (GRS, Braunschweig, Germany), Peter Frolkovič (Slovak University of Technology, Bratislava, Slovakia), Sabine Stichel and Michael Lampe (Goethe University Frankfurt, Germany). This work has been supported by the Goethe-Universität Frankfurt am Main, by the German Ministry of Economy and Technology (BMWi) via grants 02E10568 and 02E10326, as well as by the State of Hesse, Germany, via project “NuSim — Numerische Simulation auf Hochleistungsrechnern”.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Sabine Attinger.
Rights and permissions
About this article
Cite this article
Reiter, S., Logashenko, D., Grillo, A. et al. Preparation of grids for simulations of groundwater flow in fractured porous media. Comput. Visual Sci. 15, 209–225 (2012). https://doi.org/10.1007/s00791-013-0210-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00791-013-0210-7
Keywords
Profiles
- Dmitry Logashenko View author profile