Skip to main content

Advertisement

Log in

Multigrid analysis of spatially resolved hepatitis C virus protein simulations

  • Published:
Computing and Visualization in Science

Abstract

Viruses are a major challenge to human health and prosperity. This holds true for various viruses which are either threatening Europe (like Dengue and Yellow fever) or which are currently causing big health problems like the hepatitis C virus (HCV). HCV causes chronic liver diseases like cirrhosis and cancer and is the main reason for liver transplantations. Exploring biophysical properties of virus-encoded components and viral life cycle is an exciting new area of current virological research. In this context, spatial resolution is an aspect that has not yet been received much attention despite strong biological evidence suggesting that intracellular spatial dependence is a crucial factor in the viral replication process. We are developing first spatio-temporal resolved models which mimic the behavior of the important components of virus replication within single liver cells. HCV replication is strongly associated to the intracellular Endoplasmatic Reticulum (ER) network. Here, we present the computational basis for the estimation of the diffusion constant of a central component of HCV genome (viral RNA) replication, namely the NS5a protein, on the surface of realistic reconstructed ER geometries. The basic surface partial differential equation (sPDE) evaluations are performed with UG4 using fast massively parallel multigrid solvers. The numerics of the simulations are studied in detail. Integrated concentrations within special subdomains correspond to experimental FRAP time series. In particular, we analyze the refinement stability in time and space for these integrated concentrations based on diffusion sPDEs upon large unstructured surface grids using heuristic values for the NS5a diffusion constant. This builds up a solid basis for future research not included in this presentation. e.g. the presented refinement stability analysis of the single sPDEs allows for parameter estimations for the NS5a diffusion constant. Our advanced Finite Volume/multigrid techniques also could be applied for studying life cycles of other viruses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. For Yellow fever, at least a vaccine exists, which is however dangerous for people with weak immune system.

  2. In the actual version NeuRA2.3 we use Cuda7.5, cudpp2.2 and Qt5.

  3. Since we have only one concentration of evaluation, the node number corresponds to the DoF number.

References

  1. Moradpour, D., Penin, F., Rice, C.M.: Replication of hepatitis c virus. Nat. Rev. Microbiol. 5, 453–463 (2007)

    Article  Google Scholar 

  2. Paul, D., Bartenschlager, R.: Architecture and biogenesis of plus- strand rna virus replication factories. World J. Virol 2(2), 1-000 (2013)

    Article  Google Scholar 

  3. Guzman, M.G., Halstead, S.B., Artsob, H., Buchy, P., Farrar, J., Gubler, D.J., Hunsperger, E., Kroeger, A., Margolis, H.S., Martnez, E., Nathan, M.B., Pelegrino, J.L., Simmons, C., Yoksan, S., Peeling, R.W.: Dengue: a continuing global threat. Nat. Rev. Microbiol. S7 (2010)

  4. Welsch, S., Miller, S., Romero-Brey, I., Merz, A., Bleck, C.K., Walther, P., Fuller, S.D., Antony, C., Krijnse-Locker, J., Bartenschlager, R.: Composition and three-dimensional architecture of the dengue virus replication and assembly sites. Cell Host Micr. 5(4), 365–375 (2009)

    Article  Google Scholar 

  5. Kohli, A., Shaffer, A., Sherman, A., Kottilil, S.: Treatment of hepatitis C: a systematic review. JAMA 312(6), 631–640 (2014)

    Article  Google Scholar 

  6. Binder, M., Sulaimanov, N., Clausznitzer, D., Schulze, M., Hüber, C.M., Lenz, S.M., Schlöder, J.P., Trippler, M., Bartenschlager, R., Lohmann, V., Kaderali, L.: Replication vesicles are load- and choke-points in the hepatitis C virus lifecycle. PLoS Path. 9(8), e1003561 (2013)

    Article  Google Scholar 

  7. Guedj, J., Rong, L., Dahari, H., Perelson, A.S.: A perspective on modelling hepatitis C virus infection. J. Virol Hepat. 17(12), 825–833 (2010). Review

    Article  Google Scholar 

  8. Dahari, H., Ribeiro, R.M., Rice, C.M., Perelson, A.S.: Mathematical modeling of subgenomic hepatitis C virus replication in huh-7 cells. J. Virol 81(2), 750–760 (2007)

    Article  Google Scholar 

  9. Guedj, J., Rong, L., Dahari, H., Perelson, A.S.: A perspective on modeling hepatitis C virus infection. J. Virol Hepat. 17(12), 825–833 (2010)

    Article  Google Scholar 

  10. Guedj, J., Dahari, H., Rong, L., Sansone, N., Nettles, R.E., Cotler, S.J., Layden, T.J., Uprichard, S.L., Perelson, A.S.: Modeling shows that the NS5A inhibitor daclatasvir has two modes of action and yields a new estimate of the hepatitis C virus half-life. PNAS 110(10), 3991–3996 (2013)

    Article  Google Scholar 

  11. Targett-Adams, P., Graham, E.J., Middleton, J., Palmer, A., Shaw, S.M., Lavender, H., Brain, P., Tran, T.D., Jones, L.H., Wakenhut, F., Stammen, B., Pryde, D., Pickford, C., Westby, M.: Small molecules targeting hepatitis C virus-encoded ns5a cause subcellular redistribution of their target: insights into compound modes of action. J. Virol 85(13), 6353–6368 (2011)

    Article  Google Scholar 

  12. Chukkapalli, V., Berger, K.L., Kelly, S.M., Thomas, M., Deiters, A., Randall, G.: Daclatasvir inhibits hepatitis C virus NS5A motility and hyper-accumulation of phosphoinositides. Virol 476, 168–179 (2015)

    Article  Google Scholar 

  13. Wölk, B., Büchele, B., Moradpour, D., Rice, C.M.: A dynamic view of hepatitis C virus replication complexes. J Virol 82(21), 10519–10531 (2008)

    Article  Google Scholar 

  14. Eyre, N.S., Fiches, G.N., Aloia, A.L., Helbig, K.J., McCartney, E.M., McErlean, C.S.P., Li, K., Aggarwal, A., Turville, S.G., Bearda, M.R.: Dynamic imaging of the hepatitis C virus NS5A protein during a productive infection. J. Virol 88(7), 3636–3652 (2014)

    Article  Google Scholar 

  15. Romero-Brey, I., Merz, A., Chiramel, A., Lee, J.Y., Chlanda, P., Haselman, U., Santarella-Mellwig, R., Habermann, A., Hoppe, S., Kallis, S., Walther, P., Antony, C., Krijnse-Locker, J., Bartenschlager, R.: Three-dimensional architecture and biogenesis of membrane structures associated with hepatitis c virus replication. PLoS Path 8(12), e1003056 (2012)

    Article  Google Scholar 

  16. Vega, S., Neira, J.L., Marcuello, C., Lostao, A., Abian, O., Velazquez-Campoy, A.: NS3 protease from hepatitis c virus: Biophysical studies on an intrinsically disordered protein domain. Int. J. Mol. Sci. 14, 13282–13306 (2013). Review

    Article  Google Scholar 

  17. Dukhovny, A., Papadopulos, A., Hirschberg, K.: Quantitative live-cell analysis of microtubule-uncoupled cargo-protein sorting in the ER. J. Cell Sci. 121, 865–876 (2008)

    Article  Google Scholar 

  18. Nevo-Yassaf, I., Yaffe, Y., Asher, M., Ravid, O., Eizenberg, S., Henis, Y.I., Nahmias, Y., Hirschberg, K., Sklan, E.H.: Role for TBC1D20 and Rab1 in hepatitis C virus replication via interaction with lipid droplet-bound nonstructural protein 5A. J. Virol 86(12), 6491 (2012)

    Article  Google Scholar 

  19. Appel, N., Zayas, M., Miller, S., Krijnse-Locker, J., Schaller, T., et al.: Essential role of domain III of nonstructural protein 5A for hepatitis C virus infectious particle assembly. PLoS Path 4(3), e1000035 (2010)

    Article  Google Scholar 

  20. Ishikawa-Ankerhold, H.C., Ankerhold, R., Drummen, G.P.C.: Advanced fluorescence microscopy techniques—frap, flip, flap, fret and flim. Molecules 17, 4047–4132 (2012)

    Article  Google Scholar 

  21. Müller, F., Mazza, D., Stasevich, T.J., McNally, J.G.: Frap and kinetic modeling in the analysis of nuclear protein dynamics: what do we really know? Curr Opin. Cell Biol. 22(3), 403–411 (2010)

    Article  Google Scholar 

  22. Broser, P.J., Schulte, R., Roth, A., Helmchen, F., Waters, J., Lang, S., Sakmann, B., Wittum, G.: Nonlinear anisotropic diffusion filtering of three-dimensional image data from 2-photon microscopy. J. Biomed. Opt. 9(6), 1253–1264 (2004)

    Article  Google Scholar 

  23. Jungblut, D., Queisser, G., Wittum, G.: Inertia based filtering of high resolution images using a gpu cluster. Comput. Vis. Sci. 14, 181–186 (2011)

    Article  MathSciNet  Google Scholar 

  24. Heppner, I., Lampe, M., Nägel, A., Reiter, S., Rupp, M., Vogel, A., Wittum, G.: Software framework ug4: parallel multigrid on the hermit supercomputer. In: Nagel, W.E., Kröner, D.H., Resch, M.M. (eds.) High Performance Computing in Science and Engineering 12. Springer, Berlin (2013)

    Google Scholar 

  25. Reiter, S., Vogel, A., Heppner, I., Rupp, M., Wittum, G.: A massively parallel geometric multigrid solver on hierarchically distributed grids. Comput. Vis. Sci. 16(4), 151–164 (2013)

    Article  Google Scholar 

  26. Vogel, A., Reiter, S., Rupp, M., Nägel, A., Wittum, G.: UG 4: a novel flexible software system for simulating PDE based models on high performance computers. Comput. Vis. Sci. 16(4), 165–179 (2013)

    Article  Google Scholar 

  27. Knodel, M.M., Nägel, A., Reiter, S., Rupp, M., Vogel, A., Targett-Adams, P., McLauchlan, J., Herrmann, E., Wittum, G.: Quantitative analysis of hepatitis C NS5A viral protein dynamics on the ER surface (submitted) (2015)

  28. Knodel, M.M., Nägel, A., Reiter, S., Rupp, M., Vogel, A., Targett-Adams, P., Herrmann, E., Wittum, G.: On estimation of a viral protein diffusion constant on the curved intracellular ER surface. In: Nagel, W.E., Kröner, D.H., Resch, M.M. (eds.) High Performance Computing in Science and Engineering’15: transactions of the high performance computing center, Stuttgart (HLRS), p. 641–657. Springer, Cham (2016)

  29. Knodel, M.M., Reiter, S., Rupp, M., Vogel, A., Targett-Adams, P., Herrmann, E., Wittum, G.: Mechanistic dynamics of hepatitis C virus replication in single liver cells: Simple full 3D (surface) PDE models (in preparation) (2016)

  30. Chatel-Chaix, L., Bartenschlager, R.: Dengue virus and hepatitis C virus-induced replication and assembly compartments: the enemy inside—caught in the web. J. Virol 88(11), 5907–5911 (2014)

    Article  Google Scholar 

  31. Quinkert, D., Bartenschlager, R., Lohmann, V.: Quantitative analysis of the hepatitis C virus replication complex. J. Virol 79(21), 13594–13605 (2005)

    Article  Google Scholar 

  32. Keum, S.J., Park, S.M., Park, J.H., Jung, J.H., Shin, E.J., Jang, S.K.: The specific infectivity of hepatitis C virus changes through its life cycle. Virol 433, 462–470 (2012)

    Article  Google Scholar 

  33. Jones, D.M., Gretton, S.N., McLauchlan, J., Targett-Adams, P.: Mobility analysis of an NS5A-GFP fusion protein in cells actively replicating hepatitis C virus subgenomic RNA. J. Gen. Virol. 88(2), 470–475 (2007)

    Article  Google Scholar 

  34. Belda, O., Targett-Adams, P.: Small molecule inhibitors of the hepatitis C virus-encoded NS5A protein. Virus Res. 170(1–2), 1–14 (2012). Review

    Article  Google Scholar 

  35. Targett-Adams, P., Boulant, S., McLauchlan, J.: Visualization of double-stranded RNA in cells supporting hepatitis C virus RNA replication. J. Virol 82(5), 2182–2195 (2008)

    Article  Google Scholar 

  36. Netherlands. Scientific Volume Imaging B.V., Hilversum. Huygens comute engine. Software (2014) http://www.svi.nl/HuygensSoftware

  37. Kano, H., van der Voort, H.T.M., Schrader, M., van Kempen, G.M.P., Hell, S.W.: Avalanche photodiode detection with object scanning and image restoration provides 2–4 fold resolution increase in two-photon fluorescence microscopy. Bioimaging 4, 87–197 (1996)

    Article  Google Scholar 

  38. van der Voort, H.T.M., Brakenhoff, G.J.: 3-d image formation in high-aperture fluorescence confocal microscopy: a numerical analysis. J. Microsc. 158(1), 43–54 (1990)

  39. Reiter, S.: Effiziente algorithmen und datenstrukturen für die realisierung von adaptiven, hierarchischen gittern auf massiv parallelen systemen. Ph.D. thesis. University of Frankfurt (2015)

  40. Sbalzarini, I.F., Mezzacasa, A., Helenius, A., Koumoutsakos, P.: Effects of organelle shape on fluorescence recovery after photobleaching. Biophys. J. 89, 1482–1492 (2005)

  41. Bank, R.E., Rose, D.: Some error estimates for the box method. SIAM J. Numer. Anal. 24, 777–787 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  42. Means, S., Smith, A.J., Shepherd, J., Shadid, J., Fowler, J., Wojcikiewicz, R.J.H., Mazel, T., Smith, Gregory D., Wilson, B.S.: Reaction diffusion modeling of calcium dynamics with realistic er geometry. Biophys. J. 91(2), 537–557 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

We thank K. Xylouris (G-CSC) for very fruitful discussions on the evaluation of the simulation results, R. Dutta-Roy (Karolinska Institute, Stockholm, Sweden) and J. McLauchlan (Glasgow University) for profound explanations of FRAP experimental setup and data analysis, and Wouter van Beerendonk (Huygens SVI, Netherlands) for his very friendly support in Huygens usage, backgrounds, and licensing. The HLRS Stuttgart is acknowledged for the supplied computing time on the Hermit and Hornet super computers [28], and M. Lampe for vey friedly technical support on the G-CSC cesari cluster. We thank both anonymous reviewers for very helpful comments and suggestions. This work has been partially financed by Frankfurt University, by Erlangen University, by the Politecnico di Torino and the Fondazione Cassa di Risparmio di Torino in the context of the funding campaign “La Ricerca dei Talenti” (HR – Excellence in Research).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus M. Knodel.

Additional information

Eva Herrmann and Gabriel Wittum have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knodel, M.M., Nägel, A., Reiter, S. et al. Multigrid analysis of spatially resolved hepatitis C virus protein simulations. Comput. Visual Sci. 17, 235–253 (2015). https://doi.org/10.1007/s00791-016-0261-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00791-016-0261-7

Keywords

Navigation