Skip to main content
Log in

Numerical simulation of contaminant transport in groundwater using software tools of \(r^3t\)

  • Published:
Computing and Visualization in Science

Abstract

When a realistic modelling of radioactive contaminant transport in flowing groundwater is required, very large systems of coupled partial and ordinary differential equations can arise that have to be solved numerically. For that purpose, the software package \(r^3t\) is developed in which several advanced numerical methods are implemented to solve such models efficiently and accurately. Using software tools of \(r^3t\) one can treat successfully nontrivial mathematical problems like advection-dominated system with different retardation of transport for each component and with nonlinear Freundlich sorption and/or precipitation. Additionally, long time simulations on complex 3D geological domains using unstructured grids can be realized. In this paper we introduce and summarize the most important and novel features of numerical simulation for radioactive contaminant transport in porous media when using \(r^3t\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Aizinger, V., Dawson, C., Cockburn, B., Castillo, P.: The local discontinuous Galerkin method for contaminant transport. Adv. Water Resour. 24(1), 73–87 (2001)

    Article  MATH  Google Scholar 

  2. Attinger, S., Dimitrova, J., Kinzelbach, W.: Homogenization of the transport behavior of nonlinearly adsorbing pollutants in physically and chemically heterogeneous aquifers. Adv. Water Resour. 32(5), 767–777 (2009)

    Article  Google Scholar 

  3. Bastian, P., Birken, K., Eckstein, K., Johannsen, K., Lang, S., Neuss, N., Rentz-Reichert, H.: UG—a flexible software toolbox for solving partial differential equations. Comput. Vis. Sci. 1(1), 27–40 (1997)

    Article  MATH  Google Scholar 

  4. Bastian, P., Birken, K., Johannsen, K., Lang, S., Reichenberger, V., Wieners, C., Wittum, G., Wrobel, C.: A parallel software-platform for solving problems of partial differential equations using unstructured grids and adaptive multigrid methods. In: Krause, E., Jäger, W. (eds.) High Performance Computing in Science and Engineering, pp. 326–339. Springer, New York (1999)

    Google Scholar 

  5. Bastian, P., Wittum, G.: Robustness and adaptivity: the ug concept. In: Wesseling, P., Hemker, P. (eds.) Multigrid Methods IV. Proceedings of the Fourth European Multigrid Conference, Amsterdam. Birkhäuser, Basel (1994)

    Google Scholar 

  6. Bateman, H.: The solution of a system of differential equations occurring in the theory of radio-active transformations. Camb. Philos. Soc. Proc. 5, 423–427 (1910)

    MATH  Google Scholar 

  7. Bauer, P., Attinger, S., Kinzelbach, W.: Transport of a decay chain in homogenous porous media: analytical solutions. J. Contam. Hydrol. 49(3–4), 217–239 (2001)

    Article  Google Scholar 

  8. Bear, J.: Dynamics of Fluids in Porous Media. Dover, New York (1988)

    MATH  Google Scholar 

  9. Cai, Z.: On the finite volume element method. Numer. Math. 58, 713–735 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cai, Z., Mandel, J., McCormick, S.: The finite volume element method for diffusion equations on general triangulations. SIAM J. Numer. Anal. 28(2), 392–402 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  11. Schneider, A. (ed.): Advancing the codes \(d^3f\) and \(r^3t\). Final report. GRS-292, ISBN-978-3-939355-68-7. GRS, Braunschweig (2012)

  12. Fein, E.: \(d^3f\)—ein Programmpaket zur Modellierung von Dichteströmungen. GRS-139, ISBN 3-923875-97-5. GRS, Braunschweig (1998)

  13. Fein, E.: \(r^3t\)—a program suite to model transport and retention in porous media. GRS-192, ISBN-3-391995-60-7. GRS, Braunschweig (2003)

  14. Flügge, J., Küntzel, M., Schäfer, T., Gaus, I., Noseck, U.: Modeling colloid-bound radionuclide transport at the Grimsel test site. In: International Groundwater Symposium by IAHR, Valencia, Spain, pp. 1–29 (2010)

  15. Frolkovič, P.: Discretization. In: Fein, E. (ed.) \(D^3F\) - ein Programmpaket zur Modellierung von Dichteströmungen, GRS-139, Braunschweig (1998)

  16. Frolkovič, P.: Flux-based method of characteristics for contaminant transport in flowing groundwater. Comput. Vis. Sci. 5(2), 73–83 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Frolkovič, P.: The simulator and the methods used. In E. Fein, editor, \(R^3T\)—a program suite to model transport and retention in porous media, GRS-192, Braunschweig, pp. 99-169 (2003)

  18. Frolkovič, P.: Flux-based method of characteristics for coupled transport equations in porous media. Comput. Vis. Sci. 6(4), 173–184 (2004)

    Article  MathSciNet  Google Scholar 

  19. Frolkovič, P., Geiser, J.: Numerical simulations of radionuclides transport in double porosity media with sorption. In: Handlovičova, A., et al. (eds.) Algoritmy 2000, pp. 28–36. Slovak University of Technology, Bratislava (2000)

    Google Scholar 

  20. Frolkovič, P., Geiser, J.: Discretization methods with discrete minimum and maximum property for convection dominated transport in porous media. In: Dimov, I., et al. (eds.) Numerical Methods and Applications. Lecture Notes in Computer Science, vol. 2542, pp. 445–453. Springer, Berlin, Heidelberg (2003)

  21. Frolkovič, P., Kačur, J.: Semi-analytical solutions of a contaminant transport equation with nonlinear sorption in 1d. Comput. Geosci. 10(3), 265–342 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Frolkovič, P., Lampe, M., Wittum, G.: \(r^3t\) - software package for numerical simulations of radioactive contaminant transport in groundwater. In: International Topical Meeting on Mathematics and Computation. Avignon (2005). Wir Preprint 08/2005

  23. Frolkovič, P., Mikula, K.: Flux-based level set method: a finite volume method for evolving interfaces. Appl. Numer. Math. 57(4), 436–454 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Frolkovič, P., Mikula, K.: High-resolution flux-based level set method. SIAM J. Sci. Comput. 29(2), 579–597 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Geiser, J.: Lecture on discretization methods for system of convection-diffusion-reaction equations and applications realized with parallel computers. In: Workshop on Parallel and Adaptive Computing, Hohenwart (2003)

  26. Geiser, J.: Diskretisierungsverfahren für Systeme von Konvektions-Diffusions-Dispersions-Reaktions-Gleichungen und Anwendungen. PhD thesis, University of Heidelberg (2004)

  27. Hackbusch, W.: On first and second order box schemes. Computing 41, 277–296 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  28. Held, R.J., Celia, M.A.: Pore-scale modeling and upscaling of nonaqueous phase liquid mass transfer. Water Resour. Res. 37(3), 539–549 (2001)

    Article  Google Scholar 

  29. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  30. Neubauer, T., Bastian, P.: On a monotonicity preserving Eulerian–Lagrangian localized adjoint method for advection–diffusion equations. Adv. Water Resour. 28(12), 1292–1309 (2005)

    Article  Google Scholar 

  31. Neuss, N.: A new sparse matrix storage methods for adaptive solving of large systems of reaction-diffusion-transport equations. In: Keil, F., et al. (eds.) Scientific Computing in Chemical Engineering II, pp. 175–182. Springer, Berlin (1999)

    Chapter  Google Scholar 

  32. Quezada, C.R., Clement, T.P., Lee, K.-K.: Generalized solution to multi-dimensional multi-species transport equations coupled with a first-order reaction network involving distinct retardation factors. Adv. Water Resour. 27(5), 507–520 (2004)

    Article  Google Scholar 

  33. Radu, F., Suciu, N., Hoffmann, J., Vogel, A., Kolditz, O., Park, C.-H., Attinger, S.: Accuracy of numerical simulations of contaminant transport in heterogeneous aquifers: a comparative study. Adv. Water Resour. 34(1), 47–61 (2011)

    Article  Google Scholar 

  34. Restelli, M., Bonaventura, L., Sacco, R.: A semi-Lagrangian discontinuous Galerkin method for scalar advection by incompressible flows. J. Comput. Phys. 216(1), 195–215 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. Russell, T.F., Celia, M.A.: An overview of research on Eulerian–Lagrangian localized adjoint methods (ELLAM). Adv. Water Resour. 25, 1215–1231 (2002)

    Article  Google Scholar 

  36. Wang, H., Dahle, H.K., Ewing, R.E., Espedal, M.S., Sharpley, R.C., Man, S.: An ELLAM scheme for advection–diffusion equations in two dimensions. SIAM J. Sci. Comput. 20(6), 2160–2194 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Frolkovič.

Additional information

Communicated by Ralf Kornhuber.

This work was funded by the Federal Ministry of Economics and Technology (BMWi) under the Contract Number 02 E 9148 2. The first author was supported by APVV-0184-10 and VEGA 1/1137/12.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frolkovič, P., Lampe, M. & Wittum, G. Numerical simulation of contaminant transport in groundwater using software tools of \(r^3t\) . Comput. Visual Sci. 18, 17–29 (2016). https://doi.org/10.1007/s00791-016-0268-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00791-016-0268-0

Keywords

Navigation