Abstract
We present a multilevel technique for the compression and reduction of univariate data and give an optimal complexity algorithm for its implementation. A hierarchical scheme offers the flexibility to produce multiple levels of partial decompression of the data so that each user can work with a reduced representation that requires minimal storage whilst achieving the required level of tolerance. The algorithm is applied to the case of turbulence modelling in which the datasets are traditionally not only extremely large but inherently non-smooth and, as such, rather resistant to compression. We decompress the data for a range of relative errors, carry out the usual analysis procedures for turbulent data, and compare the results of the analysis on the reduced datasets to the results that would be obtained on the full dataset. The results obtained demonstrate the promise of multilevel compression techniques for the reduction of data arising from large scale simulations of complex phenomena such as turbulence modelling.












Similar content being viewed by others
References
Ainsworth, M., Klasky, S., Whitney, B.: Compression using lossless decimation: analysis and application. SIAM J. Sci. Comput. 39(4), B732–B757 (2017)
Austin, W., Ballard, G., Kolda, T. G.: Parallel tensor compression for large-scale scientific data. In: 2016 IEEE international parallel and distributed processing symposium (IPDPS), pp. 912–922, May 2016
Bank, R.E., Dupont, T.F., Yserentant, H.: The hierarchical basis multigrid method. Numer. Math. 52(4), 427–458 (1988)
Bautista, G., Leonardo, A., Cappello, F.: Improving floating point compression through binary masks. In: 2013 IEEE international conference on big data, pp. 326–331, October 2013
Bornemann, F., Yserentant, H.: A basic norm equivalence for the theory of multilevel methods. Numer. Math. 64(1), 455–476 (1993)
Burtscher, M., Hari, M., Annie, Y., Farbod, H.: Real-time synthesis of compression algorithms for scientific data. In: SC ‘16: proceedings of the international conference for high performance computing, networking, storage and analysis, IEEE, pp. 264–275, November 2016
Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley Series in Telecommunications, 1st edn. Wiley, New York (1991)
Dahmen, W., Kunoth, A.: Multilevel preconditioning. Numer. Math. 63(3), 315–344 (1992)
Daubechies, I.: The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inf. Theory 36(5), 961–1005 (1990)
Di, S., Cappello, F.: Fast error-bounded lossy HPC data compression with SZ. In: 2016 IEEE 30th international parallel and distributed processing symposium, IEEE, Chicago, IL, USA, pp. 730–739, May 2016
Donoho, D.L., Vetterli, M., DeVore, R.A., Daubechies, I.: Data compression and harmonic analysis. IEEE Trans. Inf. Theory 44(6), 2435–2476 (1998)
Edmunds, D.E., Triebel, H.: Function Spaces, Entropy Numbers, Differential Operators, 1st edn. Cambridge University Press, Cambridge (1996)
Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. The Johns Hopkins University Press, Baltimore (1996)
Grgic, S., Kers, K., Grgic, M.: Image compression using wavelets. In: Proceedings of the IEEE international symposium on industrial electronics, 1999. ISIE ‘99, vol. 1, pp. 99–104 (1999)
Griebel, M., Oswald, P.: Stable splittings of Hilbert spaces of functions of infinitely many variables. J. Complex. 41, 126–151 (2017)
Ibarria, L., Lindstrom, P., Rossignac, J., Szymczak, A.: Out-of-core compression and decompression of large n-dimensional scalar fields. Comput. Graph. Forum 22(3), 343–348 (2003)
Johns Hopkins Turbulence Databases. Forced isotropic turbulence dataset description, October 2017. Last update: 10/19/2017 5:55:14 PM. Accessed 01 Feb 2018
Kolmogorov, A.: The local structure of turbulence in incompressible viscous fluid for very large Reynolds’ numbers. Akademiia Nauk SSSR Doklady 30, 301–305 (1941)
Lakshminarasimhan, S., Shah, N., Ethier, S., Klasky, S., Latham, R., Ross, R., Samatova, N. F.: Compressing the incompressible with ISABELA: in-situ reduction of spatio-temporal data. In: Emmanuel J., Raymond N., Jean R. (eds) Euro-Par 2011: Parallel Processing Workshops, Lecture Notes in Computer Science, Bordeaux, France, Springer, Berlin, Heidelberg, vol. 6852, pp. 366–379, August 2011
Li, Y., Perlman, E., Wan, M., Yang, Y., Meneveau, C., Burns, R., Chen, S., Szalay, A., Eyink, G.: A public turbulence database cluster and applications to study Lagrangian evolution of velocity increments in turbulence. J. Turbul. 9, N31 (2008)
Lindstrom, P.: Fixed-rate compressed floating-point arrays. IEEE Trans. Vis. Comput. Graph. 20(12), 2674–2683 (2014)
Lindstrom, P., Isenburg, M.: Fast and efficient compression of floating-point data. IEEE Trans. Vis. Comput. Graph. 12(5), 1245–1250 (2006)
Marcellin, M. W., Gormish, M. J., Bilgin, A., Boliek, M. P.: An overview of JPEG-2000. In: Proceedings DCC 2000. Data compression conference, pp. 523–541 (2000)
Oswald, P.: Multilevel Finite Element Approximation. Theory and Applications. Teubner Skripten zur Numerik. B. G. Teubner, Stuttgart (1994)
Perlman, E., Burns, R., Li, Y., Meneveau, C.: Data exploration of turbulence simulations using a database cluster. In: Proceedings of the 2007 ACM/IEEE conference on supercomputing, ACM, Reno, NV, USA, vol. 23, November 2007
Salomon, D.: Data Compression: The Complete Reference, 4th edn. Springer, London (2007)
Schendel, E. R., Jin, Y., Shah, N., Chen, J., Chang, C. S., Ku, S.-H., Ethier, S., Klasky, S., Latham, R., Ross, R., Samatova, N. F.: ISOBAR preconditioner for effective and high-throughput lossless data compression. In: 2012 IEEE 28th international conference on data engineering, pp. 138–149, April 2012
Schneider, K., Farge, M., Pellegrino, G., Rogers, M.M.: Coherent vertex simulation of three-dimensional turbulent mixing layers using orthogonal wavelets. J. Fluid Mech. 534, 39–66 (2005)
Shah, N., Schendel, E. R., Lakshminarasimhan, S., Pendse, S. V., Rogers, T., Samatova, N. F.: Improving I/O throughput with PRIMACY: preconditioning ID-mapper for compressing incompressibility. In: 2012 IEEE international conference on cluster computing, pp. 209–219, September 2012
Strengert, M., Magallón, M., Weiskopf, D., Guthe, S., Ertl, T.: Hierarchical visualization and compression of large volume datasets using GPU clusters. EGPGV, pp. 41–48 (2004)
Wallace, G. K.: The JPEG still picture compression standard. IEEE Trans. Consum. Electron. 38(1), xviii–xxxiv (1992)
Author information
Authors and Affiliations
Corresponding author
Additional information
This work is dedicated to Prof. Ulrich Langer on the occasion of his sixtieth birthday.
This research was supported in part by the Exascale Computing Project (17-SC-20-SC) of the U.S. Department of Energy; the Advanced Scientific Research Office (ASCR) at the Department of Energy, under contract DE-AC02-06CH11357; the DOE Storage Systems and Input/Output for Extreme Scale Science project, announcement number LAB 15-1338; and DOE and UT–Battelle, LLC, Contract Number DE-AC05-00OR22725.
Rights and permissions
About this article
Cite this article
Ainsworth, M., Tugluk, O., Whitney, B. et al. Multilevel techniques for compression and reduction of scientific data—the univariate case. Comput. Visual Sci. 19, 65–76 (2018). https://doi.org/10.1007/s00791-018-00303-9
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00791-018-00303-9