Abstract
Parallel-in-time methods for solving initial value problems are a means to increase the parallelism of numerical simulations. Hybrid parareal schemes interleaving the parallel-in-time iteration with an iterative solution of the individual time steps are among the most efficient methods for general nonlinear problems. Despite the hiding of communication time behind computation, communication has in certain situations a significant impact on the total runtime. Here we present strict, yet not sharp, error bounds for hybrid parareal methods with inexact communication due to lossy data compression, and derive theoretical estimates of the impact of compression on parallel efficiency of the algorithms. These and some computational experiments suggest that compression is a viable method to make hybrid parareal schemes robust with respect to low bandwidth setups.




Similar content being viewed by others
References
Alhubail, M., Wang, Q., Williams, J.: The swept rule for breaking the latency barrier in time advancing two-dimensional PDEs. Preprint (2016). arXiv:1602.07558
Alhubail, M., Wang, Q.: The swept rule for breaking the latency barrier in time advancing PDEs. J. Comput. Phys. 307, 110–121 (2016)
Aubanel, E.: Scheduling of tasks in the parareal algorithm. Parallel Comput. 37, 172–182 (2011)
Bal, G.: On the convergence and the stability of the parareal algorithm to solve partial differential equations. In: Kornhuber, R., Hoppe, R., Périaux, J., Pironneau, O., Widlund, O., Xu, J. (eds.) Proceedings of DD15, volume 40 of Lecture Notes in Computational Science and Engineering, pp. 425–432. Springer (2004)
Barker, A.T.: A minimal communication approach to parallel time integration. Int. J. Comput. Math. 91(3), 601–615 (2014)
Bolten, M., Moser, D., Speck, R.: Asymptotic convergence of the parallel full approximation scheme in space and time for linear problems. Preprint (2017). arXiv:1703.07120
Christlieb, A.J., Macdonald, C.B., Ong, B.W.: Parallel high-order integrators. SIAM J. Sci. Comput. 32(2), 818–835 (2010)
Duarte, M., Massot, M., Descombes, S.: Parareal operator splitting techniques for multi-scale reaction waves: numerical analysis and strategies. M2AN 45(5), 825–852 (2011)
Dutt, A., Greengard, L., Rokhlin, V.: Spectral deferred correction methods for ordinary differential equations. BIT 40(2), 241–266 (2000)
Emmett, M., Minion, M.L.: Toward an efficient parallel in time method for partial differential equations. Commun. Appl. Math. Comput. Sci. 7(1), 105–132 (2012)
Filgueira, R., Singh, D.E., Carretero, J., Calderón, A., García, F.: Adaptive-compi: enhancing MPI-based applications’ performance and scalability by using adaptive compression. Int. J. High Perform. Comput. Appl. 25(1), 93–114 (2011)
Gander, M.: 50 years of time parallel time integration. In: Carraro, T., Geiger, M., Körkel, S., Rannacher, R. (eds.) Multiple Shooting and Time Domain Decomposition Methods, volume 9 of Contributions in Mathematical and Computational Sciences, pp. 69–113. Springer (2015)
Gander, M.J., Hairer, E.: Nonlinear convergence analysis for the parareal algorithm. In: Langer, U., Discacciati, M., Keyes, D.E., Widlund, O.B., Zulehner, W. (eds.) Domain Decomposition Methods in Science and Engineering XVII, pp. 45–56. Springer, Berlin (2008)
Gander, M.J., Neumüller, M.: Analysis of a new space-time parallel multigrid algorithm for parabolic problems. SIAM J. Sci. Comput. 38(4), A2173–A2208 (2016)
Gander, M.J., Vandewalle, S.: Analysis of the parareal time-parallel time-integration method. SIAM J. Sci. Comput. 29(2), 556–578 (2007)
Götschel, S., Weiser, M.: Lossy compression for PDE-constrained optimization: adaptive error control. Comput. Optim. Appl. 62, 131–155 (2015)
Götschel, S., Weiser, M., Schiela, A.: Solving optimal control problems with the Kaskade 7 finite element toolbox. In: Dedner, A., Flemisch, B., Klöfkorn, R. (eds.) Advances in DUNE, pp. 101–112. Springer, Berlin (2012)
Guibert, D., Tromeur-Dervout, D.: Parallel deferred correction method for CFD problems. In: Kwon, J.-H., Periaux, J., Fox, P., Satofuka, N., Ecer, A. (eds.) Parallel Computational Fluid Dynamics 2006: Parallel Computing and Its Applications, pp. 131–136 (2007)
Ke, J., Burtscher, M., Speight, E.: Runtime compression of MPI messages to improve the performance and scalability of parallel applications. In: Supercomputing, 2004. Proceedings of the ACM/IEEE SC2004 Conference, p. 59 (2004)
Keckler, S.W., Dally, W.J., Khailany, B., Garland, M., Glasco, D.: Gpus and the future of parallel computing. IEEE Micro 31(5), 7–17 (2011)
Klatt, T., Emmett, M., Ruprecht, D., Speck, R., Terzi, S.: PFASST++. http://www.parallelintime.org/codes/pfasst.html (2015). Retrieved: 04 May 2017
Leyffer, S., Wild, S.M., Fagan, M., Snir, M., Palem, K., Yoshii, K., Finkel, H.: Doing Moore with less—Leapfrogging Moore’s law with inexactness for supercomputing. CoRR (2016). arXiv:1610.02606
Lions, J.-L., Maday, Y., Turinici, G.: A parareal in time discretization of pdes. C. R. Acad. Sci. Paris Ser. I 332, 661–668 (2001)
Liu, J., Wang, Y., Li, R.: A hybrid algorithm based on optimal quadratic spline collocation and parareal deferred correction for parabolic PDEs. Math. Probl. Eng. Article ID 6943079 (2016)
McDonald, E., Wathen, A.J.: A simple proposal for parallel computation over time of an evolutionary process with implicit time stepping. In: Proceedings of the ENUMATH 2015, Lecture Notes in Computational Science and Engineering. Springer (2016)
Minion, M.L.: A hybrid parareal spectral deferred corrections method. Commun. Appl. Math. Comput. Sci. 5(2), 265–301 (2010)
Nielsen, A.S., Brunner, G., Hesthaven, J.S.: Communication-aware adaptive parareal with application to a nonlinear hyperbolic system of partial differential equations. EPFL-ARTICLE 228189, EPFL (2017)
Núñez, A., Filgueira, R., Merayo, M.G.: SANComSim: a scalable, adaptive and non-intrusive framework to optimize performance in computational science applications. Proc. Comput. Sci. 18, 230–239 (2013)
Palmer, T.: Build imprecise supercomputers. Nature 526, 32–33 (2015)
Ruprecht, D.: Wave propagation characteristics of Parareal. Comput. Vis. Sci. (2017)
Saravanan, K.P., Carpenter, P.M., Ramirez, A.: A performance perspective on energy efficient HPC links. In: ICS ’14 Proceedings of the 28th ACM International Conference on Supercomputing, pp. 313–322 (2014)
Srinivasan, A., Chandra, N.: Latency tolerance through parallelization of time in scientific applications. Parallel Comput. 31, 777–796 (2005)
Toselli, A., Widlund, O.B.: Domain Decomposition Methods-Algorithms and Theory, volume 34 of Computational Mathematics. Springer, Berlin (2005)
Weiser, M.: Faster SDC convergence on non-equidistant grids by DIRK sweeps. BIT Numer. Math. 55(4), 1219–1241 (2015)
Weiser, M., Götschel, S.: State trajectory compression for optimal control with parabolic PDEs. SIAM J. Sci. Comput. 34(1), A161–A184 (2012)
Wu, S.-L., Zhou, T.: Convergence analysis for three parareal solvers. SIAM J. Sci. Comput. 37(2), A970–A992 (2015)
Acknowledgements
Partial funding by BMBF Project SOAK and DFG Project WE 2937/6-1 is gratefully acknowledged. The authors would also like to thank Th. Steinke, F. Wende, A. Kammeyer and the North-German Supercomputing Alliance (HLRN) for supporting the numerical experiments.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Fischer, L., Götschel, S. & Weiser, M. Lossy data compression reduces communication time in hybrid time-parallel integrators. Comput. Visual Sci. 19, 19–30 (2018). https://doi.org/10.1007/s00791-018-0293-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00791-018-0293-2