Abstract
In the recent years, the multimedia data volume produced and available for access has increased continuously and quickly, notably video content. This context has also increased the overload information problem: finding content of interest in the huge amount of available options. So, efficient schemes for content access are needed. Automatic video summarization is a research field that deals with this problem. Furthermore, the current multimedia systems make available several videos related to the same topic but having, each one, a piece of unique complementary information. This fact highlights the need for multi-video summarization to deal with users’ interest in being informed about a subject from a set of videos without being obligated to watch the whole set. However, the literature analysis shows that human strategies are not considered to define criteria used to automatically select video segments that will compose a summary and the focus of techniques has been the identification of common information in different videos. In this work, we investigate human strategies for news multi-video summarization. The results of the study with real users uncover relevant criteria to develop summaries, with potential to increase their semantics and bring them closer to users’ perception.
Similar content being viewed by others
References
Almeida, J., Leite, N.J., da Silva Torres, R.: Online video summarization on compressed domain. J. Vis. Commun. Image Represent. 24(6), 729–738 (2013). https://doi.org/10.1016/j.jvcir.2012.01.009
Camargo, R.T., Di-Felippo, A., Pardo, T.A.S.: On strategies of human multi-document summarization. In: Proceedings of Symposium in Information and Human Language Technology, pp. 141–150. Sociedade Brasileira de Computação, Natal (2015)
Chen, F., De Vleeschouwer, C., Cavallaro, A.: Resource allocation for personalized video summarization. IEEE Trans. Multimed. 16(2), 455–469 (2014). https://doi.org/10.1109/TMM.2013.2291967
Cisco: white paper: Cisco VNI forecast and methodology, 2015–2020 (2016). http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html. Accessed 01 June 2017
Dale, K., Shechtman, E., Avidan, S., Pfister, H.: Multi-video browsing and summarization. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 1–8 (2012). https://doi.org/10.1109/CVPRW.2012.6239253
Groupon: why video should be a part of your 2015 marketing strategy (2014). https://www.groupon.co.uk/merchant/blog/why-video-should-be-a-part-of-your-2014-marketing-strategy. Accessed 01 June 2017
Gygli, M., Grabner, H., Riemenschneider, H., Van Gool, L.: Creating summaries from user videos. In: Computer Vision—ECCV 2014, Lecture Notes in Computer Science, vol. 8695, pp. 505–520. Springer International Publishing (2014). https://doi.org/10.1007/978-3-319-10584-0_33
Hong, R., Tang, J., Tan, H.K., Yan, S., Ngo, C., Chua, T.S.: Event driven summarization for web videos. In: Proceedings of the first SIGMM workshop on social media, WSM ’09, pp. 43–48. ACM, New York (2009). https://doi.org/10.1145/1631144.1631154
Ide, I., Zhang, Y., Tanishige, R., Doman, K., Kawanishi, Y., Deguchi, D., Murase, H.: Summarization of news videos considering the consistency of auditory and visual contents. In: 2017 IEEE International Symposium on Multimedia (ISM), pp. 193–199 (2017). https://doi.org/10.1109/ISM.2017.33
Ji, Z., Zhang, Y., Pang, Y., Li, X.: Hypergraph dominant set based multi-video summarization. Signal Process. 148(C), 114–123 (2018). https://doi.org/10.1016/j.sigpro.2018.01.028
Kanehira, A., Van Gool, L., Ushiku, Y., Harada, T.: Viewpoint-aware video summarization. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7435–7444 (2018). https://doi.org/10.1109/CVPR.2018.00776
Kannan, R., Ghinea, G., Swaminathan, S., Kannaiyan, S.: Improving video summarization based on user preferences. In: Fourth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG), pp. 1–4 (2013). https://doi.org/10.1109/NCVPRIPG.2013.6776187
Li, Y., Merialdo, B.: Multi-video summarization based on AV-MMR. In: International Workshop on Content-Based Multimedia Indexing (CBMI), pp. 1–6 (2010). https://doi.org/10.1109/CBMI.2010.5529899
Li, Y., Merialdo, B.: Multi-video summarization based on video-MMR. In: 11th International Workshop on Image Analysis for Multimedia Interactive Services WIAMIS 10, pp. 1–4 (2010)
Li, Y., Merialdo, B.: Multi-video summarization based on OB-MMR. In: 9th International Workshop on Content-Based Multimedia Indexing (CBMI), pp. 163–168 (2011). https://doi.org/10.1109/CBMI.2011.5972539
Li, Y., Merialdo, B.: Video Summarization Based on Balanced AV-MMR, pp. 370–382. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-27355-1_35
Li, Y., Merialdo, B.: Multimedia maximal marginal relevance for multi-video summarization. Multimed Tools Appl. 75(1), 199–220 (2016). https://doi.org/10.1007/s11042-014-2287-5
Li, Y., Merialdo, B., Rouvier, M., Linares, G.: Static and dynamic video summaries. In: Proceedings of the 19th ACM International Conference on Multimedia, MM ’11, pp. 1573–1576. ACM, New York (2011). https://doi.org/10.1145/2072298.2072068
Netflix: About Netflix - Netflix has been leading the way for digital content since 1997 (2019). https://media.netflix.com/en/about-netflix. Accessed 30 Apr 2019
Nie, L., Hong, R., Zhang, L., Xia, Y., Tao, D., Sebe, N.: Perceptual attributes optimization for multivideo summarization. IEEE Trans. Cybern. 46(12), 2991–3003 (2016). https://doi.org/10.1109/TCYB.2015.2493558
Nielsen, J.: how many test users in a usability study? (2012). https://www.nngroup.com/articles/how-many-test-users/. Accessed 12 Sep 2019
Ou, S.H., Lee, C.H., Somayazulu, V.S., Chen, Y.K., Chien, S.Y.: On-line multi-view video summarization for wireless video sensor network. IEEE J. Sel. Top. Signal Process. 9(1), 165–179 (2015). https://doi.org/10.1109/JSTSP.2014.2331916
Ou, S.H., Lu, Y.C., Wang, J.P., Chien, S.Y., Lin, S.D., Yeti, M.Y., Lee, C.H., Gibbons, P.B., Somayazulu, V.S., Chen, Y.K.: Communication-efficient multi-view keyframe extraction in distributed video sensors. In: IEEE Visual Communications and Image Processing Conference, pp. 13–16 (2014). https://doi.org/10.1109/VCIP.2014.7051492
Panda, R., Mithun, N.C., Roy-Chowdhury, A.K.: Diversity-aware multi-video summarization. IEEE Trans. Image Process. 26(10), 4712–4724 (2017). https://doi.org/10.1109/TIP.2017.2708902
Panda, R., Roy-Chowdhury, A.K.: Collaborative summarization of topic-related videos. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4274–4283 (2017). https://doi.org/10.1109/CVPR.2017.455
Petrie, H., Bevan, N.: The Evaluation of Accessibility, Usability, and User Experience, pp. 1–30. CRC Press, Boca Raton (2009)
Potapov, D., Douze, M., Harchaoui, Z., Schmid, C.: Category-Specific Video Summarization. In: Computer Vision – ECCV 2014, Lecture Notes in Computer Science, vol. 8694, pp. 540–555. Springer International Publishing (2014). https://doi.org/10.1007/978-3-319-10599-4_35
Preece, J., Rogers, Y., Sharp, H.: Interaction Design: Beyond Human-Computer Interaction, 1st edn. John Wiley & Sons, New York (2002)
Rajendra, S.P., Keshaveni, N.: A survey of automatic video summarization techniques. Int. J. Electron. Electr. Comput. Syst. 3(1), 1–6 (2014)
Sears, A., Hanson, V.L.: Representing users in accessibility research. ACM Trans. Access. Comput. 4(2), 7:1–7:6 (2012). https://doi.org/10.1145/2141943.2141945
Shao, J., Jiang, D., Wang, M., Chen, H., Yao, L.: Multi-video summarization using complex graph clustering and mining. Comput. Sci. Inf. Syst. 7(1), 85–98 (2010)
Toffler, A.: Future Shock, 1st edn. Bantam, New York (1984)
Truong, B.T., Venkatesh, S.: Video abstraction: a systematic review and classification. ACM Trans. Multimed. Comput. Commun. Appl. 3(1), 3 (2007). https://doi.org/10.1145/1198302.1198305
Wang, F., Merialdo, B.: Multi-document video summarization. In: IEEE International Conference on Multimedia and Expo, pp. 1326–1329 (2009). https://doi.org/10.1109/ICME.2009.5202747
Wang, M., Hong, R., Li, G., Zha, Z.J., Yan, S., Chua, T.S.: Event driven web video summarization by tag localization and key-shot identification. IEEE Trans. Multimed. 14(4), 975–985 (2012). https://doi.org/10.1109/TMM.2012.2185041
Yoshitaka, A., Sawada, K.: Personalized video summarization based on behavior of viewer. In: Eighth International Conference on Signal Image Technology and Internet Based Systems (SITIS), pp. 661–667 (2012). https://doi.org/10.1109/SITIS.2012.100
YouTube: statistics-global reach (2019). https://www.youtube.com/yt/press/statistics.html. Accessed 30 Apr 2019
Zhang, L., Gao, Y., Hong, R., Hu, Y., Ji, R., Dai, Q.: Probabilistic skimlets fusion for summarizing multiple consumer landmark videos. IEEE Trans. Multimed. 17(1), 40–49 (2015). https://doi.org/10.1109/TMM.2014.2370257
Zhang, L., Xia, Y., Mao, K., Ma, H., Shan, Z.: An effective video summarization framework toward handheld devices. IEEE Trans. Ind. Electron. 62(2), 1309–1316 (2015). https://doi.org/10.1109/TIE.2014.2336639
Zhang, Y., Ma, C., Zhang, J., Zhang, D., Liu, Y.: An interactive personalized video summarization based on sketches. In: Proceedings of the 12th ACM SIGGRAPH International Conference on Virtual-Reality Continuum and Its Applications in Industry, VRCAI ’13, pp. 249–258. ACM, New York (2013). https://doi.org/10.1145/2534329.2534343
Zhang, Y., Ma, H., Zimmermann, R.: Dynamic multi-video summarization of sensor-rich videos in geo-space, pp. 380–390. Springer, Berlin (2013). https://doi.org/10.1007/978-3-642-35725-1_35
Zhang, Y., Wang, G., Seo, B., Zimmermann, R.: Multi-video summary and skim generation of sensor-rich videos in geo-space. In: Proceedings of the 3rd Multimedia Systems Conference, MMSys ’12, pp. 53–64. ACM, New York (2012). https://doi.org/10.1145/2155555.2155565
Zhang, Y., Zhang, L., Zimmermann, R.: Aesthetics-guided summarization from multiple user generated videos. ACM Trans. Multimed. Comput. Commun. Appl. 11(2), 24:1–24:23 (2015). https://doi.org/10.1145/2659520
Zhang, Y., Zimmermann, R.: Efficient summarization from multiple georeferenced user-generated videos. IEEE Trans. Multimed. 18(3), 418–431 (2016). https://doi.org/10.1109/TMM.2016.2520827
Zhu, J., Liao, S., Li, S.Z.: Multicamera joint video synopsis. IEEE Trans. Circuits Syst. Video Technol. 26(6), 1058–1069 (2016). https://doi.org/10.1109/TCSVT.2015.2430692
Acknowledgements
This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001 and also supported by Instituto Federal de Educação, Ciência e Tecnologia de São Paulo.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Barbieri, T.T.d.S., Goularte, R. Content selection criteria for news multi-video summarization based on human strategies. Int J Digit Libr 22, 1–14 (2021). https://doi.org/10.1007/s00799-020-00281-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00799-020-00281-9