Abstract
We present a new concept for online multiobjective optimization and its application to the optimization of the operating point assignment for a doubly-fed linear motor. This problem leads to a time-dependent multiobjective optimization problem. In contrast to classical optimization where the aim is to find the (global) minimum of a single function, we want to simultaneously minimize k objective functions. The solution to this problem is given by the set of optimal compromises, the so-called Pareto set. In the case of the linear motor, there are two conflicting aims which both have to be maximized: the degree of efficiency and the inverter utilization factor. The objective functions depend on velocity, force and power, which can be modeled as time-dependent parameters. For a fixed point of time, the entire corresponding Pareto set can be computed by means of a recently developed set-oriented numerical method. An online computation of the time-dependent Pareto sets is not possible, because the computation itself is too complex. Therefore, we combine the computation of the Pareto set with numerical path following techniques. Under certain smoothness assumptions the set of Pareto points can be characterized as the set of zeros of a certain function. Here, path following allows to track the evolution of a given solution point through time.
Similar content being viewed by others
References
Allgower, E.L., Georg, K.: Numerical Continuation Methods. Springer, Heidelberg (1990)
Dellnitz, M., Schütze, O., Hestermeyer, T.: Covering Pareto sets by multilevel subdivision techniques. J. Optim. Theory Appl. 124, 113–155 (2005)
Deuflhard, P., Hohmann, A.: Numerical Analysis in Modern Scientific Computing. Springer, Heidelberg (2003)
Ettingshausen, C., Hestermeyer, T., Otto S.: Aktive Spurführung und Lenkung von Schienenfahrzeugen. 6. Magdeburger Maschinenbautage; Magdeburg (2003)
Frank, U., Giese, H., Klein, F., Oberschelp, O., Schmidt, A., Schulz, B., Vöcking, H., Witting, K.: Selbstoptimierende Systeme des Maschinenbaus—Definitionen und Konzepte. Number Band 155 in HNI-Verlagsschriftenreihe 1st edn. Bonifatius GmbH, Paderborn, Germany, (2004)
Hestermeyer, T., Schlautmann, P., Ettingshausen, C.: Active suspension system for railway vehicles—system design and kinematics. In: 2nd IFAC Conference on Mechatronic Systems, Berkely (2002)
Hillermeier, C.: Nonlinear Multiobjective Optimization—A Generalized Homotopy Approach. Birkhäuser (2001)
Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in several variables. Academic Press, Inc., New York (1970)
Kuhn, H., Tucker, A.: Nonlinear programming. In: Neumann, J. (ed.) Proc. Berkeley Symp. Math. Statist. Probability, pp. 481–492 (1951)
Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer, Dordrecht (1999)
Web-Page of the “Collaborative Research Center 614”. http://www.sfb614.de
Web-Page of the “Neue Bahntechnik Paderborn”-Project. http://www.railcab.de
Pottharst, A.: Energieversorgung und Leittechnik einer Anlage mit Linearmotor getriebenen Bahnfahrzeugen. Dissertation, University of Paderborn, Powerelectronic and Electrical Drives, (2005)
Pottharst, A., Baptist, K., Schütze, O., Böcker, J., Fröhlecke, N., Dellnitz, M.: Operating point assignment of a linear motor driven vehicle using multiobjective optimization methods. In: Proceedings of the 11th International Conference EPE-PEMC 2004, Riga, Latvia, 09/2004
Schäffler, S., Schultz, R., Weinzierl, K.: A stochastic method for the solution of unconstrained vector optimization problems. J. Opt. Th. Appl. 114(1), 209–222 (2002)
Schütze, O.: A new data structure for the nondominance problem in multi-objective optimization. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) Evolutionary Multi-Criterion Optimization (EMO 03), vol. 2. Springer, Heidelberg (2003)
Schütze, O.: Set Oriented Methods for Global Optimization. PhD Thesis, University of Paderborn (2004)
Schütze, O., Dell’Aere, A., Dellnitz, M.: On continuation methods for the numerical treatment of multi-objective optimization problems. In: Branke, J., Deb, K., Miettinen, K., Steuer, R.E. (eds.) Practical Approaches to Multi-Objective Optimization, number 04461 in Dagstuhl Seminar Proceedings. Internationales Begegnungs- und Forschungszentrum (IBFI), Schloss Dagstuhl, Germany, 2005. <http://drops.dagstuhl.de/opus/volltexte/2005/349>
Schütze, O., Dell’Aere, A., Dellnitz, M.: A new method for the computation of implicitly defined manifolds with special attention to multi-objective optimization (in progress, 2006)
Schütze, O., Mostaghim, S., Dellnitz, M., Teich, J.: Covering Pareto sets by multilevel evolutionary subdivision techniques. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) Evolutionary Multi-Criterion Optimization, Lecture Notes in Computer Science (2003)
Yang, B., Henke, M., Grotstollen, H.: Pitch analysis and control design for the linear motor of a railway carriage. In: IEEE Industrial Applications Society Annual Meeting (IAS), Chicago, USA, pp. 2360–2365, (2001)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Witting, K., Schulz, B., Dellnitz, M. et al. A new approach for online multiobjective optimization of mechatronic systems. Int J Softw Tools Technol Transf 10, 223–231 (2008). https://doi.org/10.1007/s10009-008-0066-1
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10009-008-0066-1