Skip to main content

Advertisement

Log in

A domain-specific language to design false data injection tests for air traffic control systems

  • General
  • Regular Paper
  • Published:
International Journal on Software Tools for Technology Transfer Aims and scope Submit manuscript

Abstract

The ADS-B—automatic dependent surveillance-broadcast—technology requires aircraft to broadcast their position and velocity periodically. As compared to legacy radar technologies, coupled with alarming cyber security issues (the ADS-B protocol provides no encryption nor identification), the reliance on aircraft to communicate this surveillance information exposes air transport to new cyber security threats, and especially to FDIAs—false data injection attacks—where an attacker modifies, blocks, or emits fake ADS-B messages to dupe controllers and surveillance systems. This paper is part of an ongoing research initiative toward the generation of FDIA test scenarios and focuses on supporting the test design activity, i.e., supporting ATC experts to meticulously craft test cases in order to assess the resilience of surveillance systems against FDIAs. To achieve this goal, we propose a complete and powerful domain-specific language (DSL), close to natural language, that provides a large expressiveness to support ATC business experts in creating FDIA’s test scenarios. We demonstrate the design capabilities of this approach and its productivity gain with respect to manually creating the FDIAs test scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Notes

  1. http://www.boeing.com/commercial/market/current-market-outlook-2017/.

  2. https://www.uavionix.com/products/skybeacon/.

  3. https://hackaday.com/2019/06/09/gps-and-ads-b-problems-cause-cancelled-flights/.

  4. https://flywithscout.com.

  5. https://www.eurocontrol.int/news/artas-surveillance-tracker-programme-goes-further.

  6. https://www.eurocontrol.int/services/asterix.

  7. https://www.smartesting.com.

  8. https://www.kereval.com/.

  9. http://wiki.modesbeast.com/Mode-S_Beast:Contents.

  10. http://woodair.net/sbs/Article/Barebones42_Socket_Data.htm.

  11. The source code of the alteration engine is available on GitHub: https://github.com/aymeric-cr/sbs-generation.

  12. https://www.mak.com/products/simulate/vr-forces.

  13. https://www.scalable-networks.com/exatacyber.

  14. https://cucumber.io/docs/gherkin/.

  15. https://opensky-network.org/.

  16. https://protege.stanford.edu.

  17. https://www.stardog.com/studio.

  18. https://www.topquadrant.com/products/topbraid-composer/.

  19. The OWL file is available on GitHub at: https://github.com/aymeric-cr/dsl-scenario/blob/master/fdit-dsl-ontology.owl.

  20. http://users.monash.edu/~lloyd/tildeProgLang/Grammar/Arith-Exp/.

  21. https://github.com/aymeric-cr/dsl-scenario.

  22. https://www.eclipse.org/Xtext/.

  23. https://openjfx.io/.

References

  1. 51, E.W.G.: Safety, performance and interoperability requirements document for ADS-B/NRA application. Tech. rep., The European Organisation for Civil Aviation Equipment (2005). http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.129.6059&rep=rep1&type=pdf

  2. Akerman, S., Habler, E., Shabtai, A.: VizADS-B: Analyzing sequences of ADS-B images using explainable convolutional LSTM encoder-decoder to detect cyber attacks (2019). arXiv preprint arXiv:1906.07921

  3. Akima, H.: A new method of interpolation and smooth curve fitting based on local procedures. J. ACM 17, 589–602 (1970). https://doi.org/10.1145/321607.321609

    Article  MATH  Google Scholar 

  4. Asia, I.C.A.O., (ICAO), P.O.: Guidance material on issues to be considered in atc multi-sensor fusion processing including the integration of ADS-B data. Tech. rep., APANPIRG/19 (2008). https://www.icao.int/APAC/Documents/edocs/cns/grpt_atcmulti_adsbdata.pdf

  5. Baader, F., Horrocks, I., Sattler, U.: Description logics. In: Handbook on Ontologies, pp. 3–28. Springer (2004)

  6. Barreto, A.B., Hieb, M., Yano, E.: Developing a complex simulation environment for evaluating cyber attacks. In: Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC), vol. 12248, pp. 1–9 (2012)

  7. Belta, C., Yordanov, B., Aydin Gol, E.: Temporal Logics and Automata, pp. 27–38. Springer International Publishing, Cham (2017)

  8. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Sci. Am. 284(5), 34–43 (2001)

    Article  Google Scholar 

  9. Brooker, P.: Sesar and nextgen: investing in new paradigms. J. Navig. 61(2), 195–208 (2008)

    Article  Google Scholar 

  10. Ceh, I., Crepinšek, M., Kosar, T., Mernik, M.: Ontology driven development of domain-specific languages. Comput. Sci. Inf. Syst. 8(2), 317–342 (2011)

    Article  Google Scholar 

  11. Chan, Y.T., Ho, K.: A simple and efficient estimator for hyperbolic location. IEEE Trans. Signal Process. 42(8), 1905–1915 (1994)

    Article  Google Scholar 

  12. Coplien, J., Hoffman, D., Weiss, D.: Commonality and variability in software engineering. IEEE Softw. 15(6), 37–45 (1998)

    Article  Google Scholar 

  13. Cretin, A., Legeard, B., Peureux, F., Vernotte, A.: Increasing the resilience of ATC systems against false data injection attacks using DSL-based testing. In: Proceedings of the 8th International Conference on Research in Air Transportation (ICRAT’18), Doctoral Symposium, pp. 1–4. Barcelona, Spain (2018)

  14. Cretin, A., Vernotte, A., Chevrot, A., Peureux, F., Legeard, B.: Test data generation for false data injection attack testing in air traffic surveillance. In: 4th International Workshop on Testing Extra-Functional Properties and Quality Characteristics of Software Systems (ITEQS 2020). Porto, Portugal (2020)

  15. Dan, G., Sandberg, H.: Stealth attacks and protection schemes for state estimators in power systems. In: Smart Grid Communications (SmartGridComm), 2010 First IEEE International Conference on, pp. 214–219. IEEE (2010)

  16. Epperson, J.F.: On the runge example. Am. Math. Mon. 94(4), 329–341 (1987)

    Article  MathSciNet  Google Scholar 

  17. EUROCONTROL: D23—security assessment for ADS-B ground system—3rd iteration 00.01.02. Tech. rep., Sesar Joint Undertaking (SJU) (2014)

  18. Frakes, W., Prieto, R., Fox, C., et al.: Dare: Domain analysis and reuse environment. Ann. Softw. Eng. 5(1), 125–141 (1998)

    Article  Google Scholar 

  19. Glimm, B., Horrocks, I., Motik, B., Stoilos, G., Wang, Z.: Hermit: an owl 2 reasoner. J. Autom. Reason. 53(3), 245–269 (2014)

    Article  Google Scholar 

  20. Habler, E., Shabtai, A.: Using lstm encoder-decoder algorithm for detecting anomalous ADS-B messages. Comput. Secur. 78, 155–173 (2018)

    Article  Google Scholar 

  21. Hills, M., Klint, P., van der Storm, T., Vinju, J.: A case of visitor versus interpreter pattern. In: Bishop, J., Vallecillo, A. (eds.) Objects, Models, Components, Patterns, pp. 228–243. Springer, Berlin (2011)

    Chapter  Google Scholar 

  22. Jafer, S., Chhaya, B., Durak, U.: Owl ontology to ecore metamodel transformation for designing a domain specific language to develop aviation scenarios. In: Proceedings of the Symposium on Model-Driven Approaches for Simulation Engineering, pp. 1–11 (2017)

  23. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-Oriented Domain Analysis (FODA) Feasibility Study. Carnegie-Mellon Univ Pittsburgh Pa Software Engineering Inst, Tech. rep. (1990)

    Book  Google Scholar 

  24. Kosar, T., Bohra, S., Mernik, M.: Domain-specific languages: a systematic mapping study. Inf. Softw. Technol. 71, 77–91 (2016). https://doi.org/10.1016/j.infsof.2015.11.001

    Article  Google Scholar 

  25. Lassila, O., Swick, R.R., et al.: Resource description framework (rdf) model and syntax specification (1998)

  26. Lisboa, L.B., Garcia, V.C., Lucrédio, D., de Almeida, E.S., de Lemos Meira, S.R., de Mattos Fortes, R.P.: A systematic review of domain analysis tools. Inf. Softw. Technol. 52(1), 1–13 (2010)

    Article  Google Scholar 

  27. Liu, Y., Ning, P., Reiter, M.K.: False data injection attacks against state estimation in electric power grids. ACM Trans. Inf. Syst. Secur. (TISSEC) 14(1), 13 (2011)

    Article  Google Scholar 

  28. Ma, M.: Resilience against false data injection attack in wireless sensor networks. In: Handbook of Research on Wireless Security, pp. 628–635. IGI Global (2008)

  29. Maciel, D., Paiva, A.C., da Silva, A.R.: From requirements to automated acceptance tests of interactive apps: an integrated model-based testing approach. In: Proceedings of the 14th International Conference on Evaluation of Novel Approaches to Software Engineering, pp. 265–272. SCITEPRESS-Science and Technology Publications, Lda (2019)

  30. Manesh, M.R., Kaabouch, N.: Analysis of vulnerabilities, attacks, countermeasures and overall risk of the automatic dependent surveillance-broadcast (ADS-B) system. Int. J. Crit. Infrastruct. Prot. 19, 16–31 (2017). https://doi.org/10.1016/j.ijcip.2017.10.002

    Article  Google Scholar 

  31. Manesh, M.R., Mullins, M., Foerster, K., Kaabouch, N.: A preliminary effort toward investigating the impacts of ADS-B message injection attack. In: 2018 IEEE Aerospace Conference, pp. 1–6. IEEE (2018)

  32. Martinovic, I., Strohmeier, M.: Security of ADS-B: State of the art and beyond. DCS (2013)

  33. McGuinness, D.L., Van Harmelen, F., et al.: Owl web ontology language overview. W3C Recommend. 10(10): 2004 (2004)

  34. Menzel, T., Bagschik, G., Maurer, M.: Scenarios for development, test and validation of automated vehicles. In: 2018 IEEE Intelligent Vehicles Symposium (IV), pp. 1821–1827. IEEE (2018)

  35. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific languages. ACM Comput. Surv. 37(4), 316–344 (2005). https://doi.org/10.1145/1118890.1118892

    Article  Google Scholar 

  36. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific languages. ACM Comput. Surv. (CSUR) 37(4), 316–344 (2005)

    Article  Google Scholar 

  37. Mernik, M., Hrnčič, D., Bryant, B.R., Javed, F.: Applications of grammatical inference in software engineering: domain specific language development, pp. 421–457. Imperial College Press (2010). https://doi.org/10.1142/9781848165458_0008

  38. Paielli, R.A.: Automated generation of air traffic encounters for testing conflict-resolution software. J. Aerosp. Inf. Syst. 10(5), 209–217 (2013)

    Google Scholar 

  39. Pakin, S.: The design and implementation of a domain-specific language for network performance testing. IEEE Trans. Parallel Distrib. Syst. 18(10), 1436–1449 (2007)

    Article  Google Scholar 

  40. Pereira, M.J.A.V., Fonseca, J.A., Henriques, P.R.: Ontological approach for dsl development. Comput. Lang. Syst. Struct. 45(C), 35–52 (2016). https://doi.org/10.1016/j.cl.2015.12.004

    Article  Google Scholar 

  41. Queiroz, R., Berger, T., Czarnecki, K.: Geoscenario: an open dsl for autonomous driving scenario representation. In: 2019 IEEE Intelligent Vehicles Symposium (IV), pp. 287–294. IEEE (2019)

  42. Rui, L., Ho, K.: Elliptic localization: performance study and optimum receiver placement. IEEE Trans. Signal Process. 62(18), 4673–4688 (2014)

    Article  MathSciNet  Google Scholar 

  43. Savvides, A., Park, H., Srivastava, M.B.: The bits and flops of the n-hop multilateration primitive for node localization problems. In: Proceedings of the 1st ACM International Workshop on Wireless Sensor Networks and Applications, pp. 112–121. ACM (2002)

  44. Schäfer, M., Lenders, V., Martinovic, I.: Experimental analysis of attacks on next generation air traffic communication. In: International Conference on Applied Cryptography and Network Security, pp. 253–271. Springer (2013)

  45. Skolnik, M.I.: Radar Handbook. 3rd edn (2008)

  46. Smith, A., Cassell, R., Breen, T., Hulstrom, R., Evers, C.: Methods to provide system-wide ADS-B back-up, validation and security. In: 25th Digital Avionics Systems Conference, pp. 1–7. IEEE (2006)

  47. Strohmeier, M.: Security in next generation air traffic communication networks. Ph.D. thesis, Oxford University (2016)

  48. Strohmeier, M., Schäfer, M., Pinheiro, R., Lenders, V., Martinovic, I.: On perception and reality in wireless air traffic communications security. IEEE Trans. Intell. Transp. Syst. 18(6), 1338–1357 (2017). https://doi.org/10.1109/TITS.2016.2612584

    Article  Google Scholar 

  49. Studer, R., Benjamins, V.R., Fensel, D.: Knowledge engineering: principles and methods. Data Knowl. Eng. 25(1–2), 161–197 (1998)

    Article  Google Scholar 

  50. Tairas, R., Mernik, M., Gray, J.: Using ontologies in the domain analysis of domain-specific languages. In: International Conference on Model Driven Engineering Languages and Systems, pp. 332–342. Springer (2008)

  51. Taylor, R.N., Tracz, W., Coglianese, L.: Software development using domain-specific software architectures: Cdrl a011-a curriculum module in the sei style. ACM SIGSOFT Softw. Eng. Notes 20(5), 27–38 (1995)

    Article  Google Scholar 

  52. Trim, R.: Mode s: an introduction and overview (secondary surveillance radar). Electron. Commun. Eng. J. 2(2), 53–59 (1990)

    Article  Google Scholar 

  53. Tsarkov, D., Horrocks, I.: Fact++ description logic reasoner: system description. In: International Joint Conference on Automated Reasoning, pp. 292–297. Springer (2006)

  54. Van Deursen, A., Klint, P.: Domain-specific language design requires feature descriptions. J. Comput. Inf. Technol. 10(1), 1–17 (2002)

    Article  Google Scholar 

  55. Wesson, K.D., Humphreys, T.E., Evans, B.L.: Can cryptography secure next generation air traffic surveillance? IEEE Secur. Privacy Mag. (2014)

  56. Xie, L., Mo, Y., Sinopoli, B.: False data injection attacks in electricity markets. In: Smart Grid Communications (SmartGridComm), First International Conference on, pp. 226–231. IEEE (2010)

  57. Zhang, R., Liu, G., Liu, J., Nees, J.P.: Analysis of message attacks in aviation datalink communication. IEEE Access (2017)

Download references

Acknowledgements

This work is part of an ongoing research initiative toward the generation of FDIA test scenarios partially supported by the GeLeaD ANR ASTRID Project & the EIPHI Graduate school (Contract “ANR-17-EURE-0002”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aymeric Cretin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Ontology inheritance tree

Appendix A: Ontology inheritance tree

All the entities that were identified and modeled into the DSL’s ontology during the domain analysis activity (see Sect. 5) are depicted in Figs. 21, 22 and 23. More importantly, the figures show the inheritance relationships between entities. Note that as there is a unique Thing entity from which all other entities directly or indirectly inherit from (similarly to the Object class in Java), the tree was originally depicted in a single figure. But for obvious space reasons, that figure was eventually split into three.

Fig. 21
figure 21

Ontology inheritance tree 1/3

Fig. 22
figure 22

Ontology inheritance tree 2/3

Fig. 23
figure 23

Ontology inheritance tree 3/3

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vernotte, A., Cretin, A., Legeard, B. et al. A domain-specific language to design false data injection tests for air traffic control systems. Int J Softw Tools Technol Transfer 24, 127–158 (2022). https://doi.org/10.1007/s10009-021-00604-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10009-021-00604-4

Keywords