Skip to main content
Log in

A kinetic approach to investigate the collective dynamics of multi-agent systems

  • Foundations for Mastering Change
  • Special Section: Rigorous Engineering of Collective Adaptive Systems
  • Published:
International Journal on Software Tools for Technology Transfer Aims and scope Submit manuscript

Abstract

When the number of interacting agents in a multi-agent system is large, the detailed study of the dynamics of each agent tends to obfuscate the collective and possibly emergent dynamics of the multi-agent system as a whole. When the interest is on the collective properties of the multi-agent system, a statistical study of the dynamics of the states of the agents can provide a more effective perspective on the system. In particular, a statistical approach can better focus on the long-term asymptotic properties of the studied multi-agent system. The initial part of this paper outlines a framework to approach the study of the collective properties of multi-agent systems. The framework targets large and decentralized multi-agent systems in which the relevant collective properties emerge from interactions. Then, the paper exemplifies the use of the framework to study the long-term asymptotic properties of multi-agent systems in which agents interact using the symmetric gossip algorithm. The state of each agent is represented as a real number, and the use of the framework shows that all agents exponentially converge to the average of their initial states. The analytic results provided by the framework are confirmed by independent multi-agent simulations. Finally, the paper is concluded with a brief discussion of related work and an overview of future extensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adiga, A., Kuhlman, C.J., Mortveit, H.S., Vullikanti, A.K.S.: Sensitivity of diffusion dynamics to network uncertainty. J. Artif. Intell. Res. 51, 207–226 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Asensio-Marco, C., Beferull-Lozano, B.: Fast average gossiping under asymmetric links in WSNS. In: Proceedings of the \(22^{\textrm{nd}}\) European Signal Processing Conference (EUSIPCO 2014), pp. 131–135. IEEE, Los Alamitos (2014)

    Google Scholar 

  3. Bakhshi, R., Cloth, L., Fokkink, W., Haverkort, B.: Mean-field analysis for the evaluation of gossip protocols. In: Proceedings of \(6^{\textrm{th}}\) International Conference on the Quantitative Evaluation of Systems (QEST 2009), pp. 247–256. IEEE, Los Alamitos (2009)

    Google Scholar 

  4. Bellomo, N., Burini, D., Dosi, G., Gibelli, L., Knopoff, D., Outada, N., Terna, P., Virgillito, M.E.: What is life? A perspective of the mathematical kinetic theory of active particles. Math. Models Methods Appl. Sci. 31(9), 1821–1866 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bellouquid, A., Delitala, M.: Mathematical Modeling of Complex Biological Systems. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Basel (2006)

    MATH  Google Scholar 

  6. Bergenti, F., Huhns, M.N.: On the use of agents as components of software systems. In: Methodologies and Software Engineering for Agent Systems: The Agent-Oriented Software Engineering Handbook, pp. 19–32. Kluwer Academic, Norwell (2004)

    Chapter  Google Scholar 

  7. Bergenti, F., Ricci, A.: Three approaches to the coordination of multiagent systems. In: Proceedings of the ACM Symposium on Applied Computing (SAC 2002), pp. 367–372. ACM, New York (2002)

    Chapter  Google Scholar 

  8. Bianca, C., Dogbe, C.: On the Boltzmann gas mixture equation: linking the kinetic and fluid regimes. Commun. Nonlinear Sci. Numer. Simul. 29, 240–256 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Boghosian, B.M.: Kinetics of wealth and the Pareto law. Phys. Rev. E 89(4) (2014)

  10. Bortolussi, L., Hillston, J., Latella, D., Massink, M.: Continuous approximation of collective system behaviour: a tutorial. Perform. Eval. 70(5), 317–349 (2013)

    Article  Google Scholar 

  11. Boudec, J.Y., McDonald, D., Mundinger, J.: A generic mean field convergence result for systems of interacting objects. In: Proceedings of the \(4^{\textrm{th}}\) International Conference on the Quantitative Evaluation of Systems (QEST 2007). IEEE, Los Alamitos (2007)

    Google Scholar 

  12. Boyd, S., Ghosh, A., Prabhakar, B., Shah, D.: Analysis and optimization of randomized gossip algorithms. In: Proceedings of the 2004 IEEE Conference on Decision and Control, pp. 5310–5315. IEEE, Los Alamitos (2004)

    Google Scholar 

  13. Boyd, S., Ghosh, A., Prabhakar, B., Shah, D.: Randomized gossip algorithms. IEEE Trans. Inf. Theory 52(6), 2508–2530 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Brauer, F.: Compartmental models in epidemiology. In: Mathematical Epidemiology. Lecture Notes in Mathematics, vol. 1945, pp. 19–79. Springer, Berlin (2008)

    Chapter  MATH  Google Scholar 

  15. Bures, T., Nicola, R.D., Gerostathopoulos, I., Hoch, N., Kit, M., Koch, N., Monreale, G.V., Montanari, U., Pugliese, R., Serbedzija, N.B., Wirsing, M., Zambonelli, F.: A life cycle for the development of autonomic systems: the e-mobility showcase. In: Proceedings of the \(7^{\textrm{th}}\) IEEE International Conference on Self-Adaptation and Self-Organizing Systems Workshops (SASOW 2013), pp. 71–76. IEEE, Los Alamitos (2013)

    Google Scholar 

  16. Cardelli, L., Csikász-Nagy, A.: The cell cycle switch computes approximate majority. Sci. Rep. 2(656) (2012)

  17. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Syntactic Markovian bisimulation for chemical reaction networks. In: Models, Algorithms, Logics and Tools: Essays Dedicated to Kim Guldstrand Larsen on the Occasion of His 60th Birthday. Lecture Notes in Computer Science, vol. 10460, pp. 466–483. Springer, Berlin (2017)

    Chapter  Google Scholar 

  18. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Symbolic computation of differential equivalences. Theor. Comput. Sci. 777, 132–154 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Cardelli, L., Tribastone, M., Tschaikowski, M.: From electric circuits to chemical networks. Nat. Comput. 19, 237–248 (2020)

    Article  MathSciNet  Google Scholar 

  20. Castelli, G., Mamei, M., Rosi, A., Zambonelli, F.: Engineering pervasive service ecosystems: the SAPERE approach. ACM Trans. Auton. Adapt. Syst. 10(1), 1:1–1:27 (2015)

    Article  Google Scholar 

  21. Chakrabarti, B.K., Chakraborti, A., Chatterjee, A.: Econophysics and Sociophysics: Trends and Perspectives. Wiley, New York (2006)

    Book  Google Scholar 

  22. De Nicola, R., Jähnichen, S., Wirsing, M.: Rigorous engineering of collective adaptive systems: special section. Int. J. Softw. Tools Technol. Transf. 22, 389–397 (2020)

    Article  Google Scholar 

  23. Dimarco, G., Pareschi, L., Toscani, G., Zanella, M.: Wealth distribution under the spread of infectious diseases. Phys. Rev. E 120, 022303 (2020)

    Article  MathSciNet  Google Scholar 

  24. Fagnani, F., Zampieri, S.: Asymmetric randomized gossip algorithms for consensus. IFAC Proc. Vol. 41(2), 9052–9056 (2008)

    Google Scholar 

  25. Fagnani, F., Zampieri, S.: Randomized consensus algorithms over large scale networks. IEEE J. Sel. Areas Commun. 26(4) (2008)

  26. Feret, J., Danos, V., Krivine, J., Harmer, R., Fontana, W.: Internal coarse-graining of molecular systems. Proc. Natl. Acad. Sci. 106(16), 6453–6458 (2009)

    Article  Google Scholar 

  27. Ferscha, A.: Collective adaptive systems. In: Adjunct Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2015 ACM International Symposium on Wearable Computers, pp. 893–895. ACM, New York (2015)

    Chapter  Google Scholar 

  28. Galam, S.: Sociophysics: A Physicist’s Modeling of Psycho-Political Phenomena. Understanding Complex Systems. Springer, Berlin (2012)

    Book  Google Scholar 

  29. Garcia, A.F., de Lucena, C.J.P., Zambonelli, F., Omicini, A., Castro, J. (eds.): Software Engineering for Large-Scale Multi-Agent Systems, Research Issues and Practical Applications. Lecture Notes in Computer Science, vol. 2603. Springer, Berlin (2002)

    Google Scholar 

  30. Goldman, C.V., Zilberstein, S.: Decentralized control of cooperative systems: categorization and complexity analysis. J. Artif. Intell. Res. 22, 143–174 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hillston, J., Pitt, J., Wirsing, M., Zambonelli, F.: Collective adaptive systems: qualitative and quantitative modelling and analysis. Dagstuhl Rep. 4(12), 68–113 (2014)

    Google Scholar 

  32. Huhns, M.N. (ed.): Distributed Artificial Intelligence Pitman, London (1987)

    MATH  Google Scholar 

  33. Kash, I.A., Friedman, E.J., Halpern, J.Y.: Multiagent learning in large anonymous games. J. Artif. Intell. Res. 40, 571–598 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Liboff, R.L.: Kinetic Theory: Classical, Quantum, and Relativistic Descriptions. Graduate Texts in Contemporary Physics. Springer, Berlin (2003)

    Google Scholar 

  35. Mantegna, R.N., Stanley, H.E.: An Introduction to Econophysics: Correlations and Complexity in Finance. Cambridge University Press, Cambridge (1999)

    Book  MATH  Google Scholar 

  36. Mariani, S., Cabri, G., Zambonelli, F.: Coordination of autonomous vehicles: taxonomy and survey. ACM Comput. Surv. 54(1), 19:1–19:33 (2021)

    Google Scholar 

  37. Mitchell, M.: Complex systems: network thinking. Artif. Intell. 170, 1194–1212 (2006)

    Article  MathSciNet  Google Scholar 

  38. Monica, S., Bergenti, F.: An analytic study of opinion dynamics in multi-agent systems with additive random noise. In: AI*IA 2016 Advances in Artificial Intelligence. Lecture Notes in Computer Science, vol. 10037, pp. 105–117. Springer, Berlin (2016)

    Chapter  MATH  Google Scholar 

  39. Monica, S., Bergenti, F.: An analytic study of opinion dynamics in multi-agent systems. Comput. Math. Appl. 73(10), 2272–2284 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  40. Monica, S., Bergenti, F.: Opinion dynamics in multi-agent systems: selected analytic models and verifying simulations. Comput. Math. Organ. Theory 23(3), 423–450 (2017)

    Article  MATH  Google Scholar 

  41. Monica, S., Bergenti, F., Zambonelli, F.: Toward a kinetic framework to model the collective dynamics of multi-agent systems. In: Proceedings of the \(11^{\textrm{th}}\) International Symposium on Leveraging Applications of Formal Methods, Verification and Validation (ISoLA 2022). Lecture Notes in Computer Science, vol. 13703, pp. 165–180. Springer, Berlin (2022)

    Google Scholar 

  42. Pareschi, L., Toscani, G.: Interacting Multiagent Systems: Kinetic Equations and Montecarlo Methods. Oxford University Press, London (2013)

    MATH  Google Scholar 

  43. Piccoli, B., Tosin, A., Zanella, M.: Model-based assessment of the impact of driver-assist vehicles using kinetic theory. Z. Angew. Math. Phys. 71, 152 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  44. Poslad, S.: Specifying protocols for multi-agent systems interaction. ACM Trans. Auton. Adapt. Syst. 2(4), 15:1–15:24 (2007)

    Article  Google Scholar 

  45. Pynadath, D.V., Tambe, M.: The communicative multiagent team decision problem: analyzing teamwork theories and models. J. Artif. Intell. Res. 16, 389–423 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  46. Schweitzer, F.: Brownian Agents and Active Particles: Collective Dynamics in the Natural and Social Sciences. Synergetics. Springer, Berlin (2003)

    MATH  Google Scholar 

  47. Slanina, F.: Inelastically scattering particles and wealth distribution in an open economy. Phys. Rev. E 69, 46 (2004)

    Article  Google Scholar 

  48. Sznajd-Weron, K., Sznajd, J.: Opinion evolution in closed community. Int. J. Mod. Phys. C 11, 1157–1166 (2000)

    Article  MATH  Google Scholar 

  49. Thurner, S., Klimek, P., Hanel, R.: Introduction to the Theory of Complex Systems. Oxford University Press, London (2018)

    Book  MATH  Google Scholar 

  50. van den Broek, B., Wiegerinck, W., Kappen, B.: Graphical model inference in optimal control of stochastic multi-agent systems. J. Artif. Intell. Res. 32, 95–122 (2008)

    Article  MATH  Google Scholar 

  51. Weidlich, W.: Sociodynamics: A Systematic Approach to Mathematical Modelling in the Social Sciences. Harwood Academic, Reading (2000)

    MATH  Google Scholar 

  52. Whitby, M., Cardelli, L., Kwiatkowska, M., Laurenti, L., Tribastone, M., Tschaikowski, M.: PID control of biochemical reaction networks. IEEE Trans. Autom. Control 67(2) (2022)

  53. Wolpert, D.H., Tumer, K.: Collective intelligence, data routing and Braess’ paradox. J. Artif. Intell. Res. 16, 359–387 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  54. Xu, Y., Liao, E., Scerri, P., Yu, B., Lewis, M., Sycara, K.: Towards flexible coordination of large scale multi-agent teams. In: Coordination of Large-Scale Multiagent Systems, pp. 287–309. Springer, Berlin (2006)

    Chapter  Google Scholar 

  55. Ygge, F., Akkermans, H.: Decentralized markets versus central control: a comparative study. J. Artif. Intell. Res. 11, 301–333 (1999)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Italian Ministry of University and Research under the PRIN 2017 grant 2017KRC7KT for the project Fluidware and under the PRIN 2020 grant 2020TL3X8X for the project Typeful Language Adaptation for Dynamic, Interacting and Evolving Systems (T-LADIES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franco Zambonelli.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monica, S., Bergenti, F. & Zambonelli, F. A kinetic approach to investigate the collective dynamics of multi-agent systems. Int J Softw Tools Technol Transfer 25, 693–705 (2023). https://doi.org/10.1007/s10009-023-00724-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10009-023-00724-z

Keywords

Navigation