Abstract
This paper features an approach that combines machine-learning abstractions with a component model. We target modern self-optimizing systems and therefore integrate the machine-learning abstractions into our ensemble-based component model DEECo. We further endow the DEECo component model with abstractions for specifying self-optimization heuristics, which address coordination among multiple components. We demonstrate these abstractions in the context of an Industry 4.0 use case. We argue that incorporating machine learning and optimization heuristics is the key feature for modern smart systems, which learn over time and optimize their behavior at runtime to deal with uncertainty in their environment.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bures, T., Gerostathopoulos, I., Hnetynka, P., Keznikl, J., Kit, M., Plasil, F.: DEECO: an ensemble-based component system. In: Proceedings of CBSE 2013, Vancouver, Canada, pp. 81–90 (2013). https://doi.org/10.1145/2465449.2465462
Replication package (2023). https://github.com/smartarch/ml-deeco-security-isola-journal
Töpfer, M., Abdullah, M., Bureš, T., Hnětynka, P., Kruliš, M.: Ensemble-based modeling abstractions for modern self-optimizing systems. In: Proceedings of ISOLA 2022, Rhodes, Greece. LNCS, pp. 318–334 (2022). https://doi.org/10.1007/978-3-031-19759-8_20
Al-Ali, R., Hnetynka, P., Havlik, J., Krivka, V., Heinrich, R., Seifermann, S., Walter, M., Juan-Verdejo, A.: Dynamic security rules for legacy systems. In: Proceedings of ECSA 2019 (Vol 2), Paris, France (2019). https://doi.org/10.1145/3344948.3344974
Bures, T., Gerostathopoulos, I., Hnetynka, P., Plasil, F., Krijt, F., Vinarek, J., Kofron, J.: A language and framework for dynamic component ensembles in smart systems. Int. J. Softw. Tools Technol. Transf. 22(4), 497–509 (2020). https://doi.org/10.1007/s10009-020-00558-z
Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 881–892 (2002). https://doi.org/10.1109/TPAMI.2002.1017616
Heinrich, B., Klier, M., Zimmermann, S.: Automated planning of process models: design of a novel approach to construct exclusive choices. Decis. Support Syst. 78, 1–14 (2015). https://doi.org/10.1016/j.dss.2015.07.005
Gheibi, O., Weyns, D., Quin, F.: Applying machine learning in self-adaptive systems: A systematic literature review. ACM Trans. Auton. Adapt. Syst. 15(3), 9 (2021). https://doi.org/10.1145/3469440
Saputri, T.R.D., Lee, S.-W.: The application of machine learning in self-adaptive systems: A systematic literature review. IEEE Access 8, 205948–205967 (2020). https://doi.org/10.1109/ACCESS.2020.3036037
Van Der Donckt, J., Weyns, D., Quin, F., Van Der Donckt, J., Michiels, S.: Applying deep learning to reduce large adaptation spaces of self-adaptive systems with multiple types of goals. In: Proceedings of SEAMS 2020, Seoul, South Korea, pp. 20–30 (2020). https://doi.org/10.1145/3387939.3391605
Van Der Donckt, J., Weyns, D., Iftikhar, M.U., Buttar, S.S.: Effective decision making in self-adaptive systems using cost-benefit analysis at runtime and online learning of adaptation spaces. In: Evaluation of Novel Approaches to Software Engineering. LNCS, vol. 1023 (2019). https://doi.org/10.1007/978-3-030-22559-9_17
Gheibi, O., Weyns, D., Quin, F.: On the impact of applying machine learning in the decision-making of self-adaptive systems. In: Proceedings of SEAMS 2021, Madrid, Spain, pp. 104–110 (2021). https://doi.org/10.1109/SEAMS51251.2021.00023
Gabor, T., Sedlmeier, A., Phan, T., Ritz, F., Kiermeier, M., Belzner, L., Kempter, B., Klein, C., Sauer, H., Schmid, R., Wieghardt, J., Zeller, M., Linnhoff-Popien, C.: The scenario coevolution paradigm: adaptive quality assurance for adaptive systems. Int. J. Softw. Tools Technol. Transf. 22(4), 457–476 (2020). https://doi.org/10.1007/s10009-020-00560-5
Cámara, J., Muccini, H., Vaidhyanathan, K.: Quantitative verification-aided machine learning: A tandem approach for architecting self-adaptive IoT systems. In: Proceedings of ICSA 2021, Salvador, Brazil, pp. 11–22. IEEE Press, New York (2020). https://doi.org/10.1109/ICSA47634.2020.00010
Palm, A., Metzger, A., Pohl, K.: Online reinforcement learning for self-adaptive information systems. In: Proceedings of CAiSE 2020, Grenoble, France. LNCS, vol. 12127 (2020). https://doi.org/10.1007/978-3-030-49435-3_11
Grohmann, J., Eismann, S., Bauer, A., Spinner, S., Blum, J., Herbst, N., Kounev, S.: SARDE: A framework for continuous and self-adaptive. Resource demand estimation. ACM Trans. Auton. Adapt. Syst. 15(2), 1–31 (2021). https://doi.org/10.1145/3463369
Muccini, H., Vaidhyanathan, K.: A machine learning-driven approach for proactive decision making in adaptive architectures. In: Companion Proceedings of ICSA 2019, Hamburg, Germany, pp. 242–245 (2019). https://doi.org/10.1109/ICSA-C.2019.00050
Nicola, R.D., Latella, D., Lafuente, A.L., Loreti, M., Margheri, A., Massink, M., Morichetta, A., Pugliese, R., Tiezzi, F., Vandin, A.: The SCEL language: design, implementation, verification. In: Software Engineering for Collective Autonomic Systems. LNCS, pp. 3–71 (2015). https://doi.org/10.1007/978-3-319-16310-9_1
jRESP: Java Runtime Environment for SCEL Programs. Accessed: 2022/07/31. http://jresp.sourceforge.net/
Hennicker, R., Klarl, A.: Foundations for ensemble modeling – the Helena approach. In: Specification, Algebra, and Software. LNCS, pp. 359–381 (2014). https://doi.org/10.1007/978-3-642-54624-2_1
Alrahman, Y.A., Nicola, R.D., Loreti, M.: On the power of attribute-based communication. In: Proceedings of FORTE 2016, Heraklion, Crete, Greece, pp. 1–18 (2016). https://doi.org/10.1007/978-3-319-39570-8_1
Alrahman, Y.A., De Nicola, R., Loreti, M.: Programming interactions in collective adaptive systems by relying on attribute-based communication. Sci. Comput. Program. 192, 102428 (2020). https://doi.org/10.1016/j.scico.2020.102428
Alrahman, Y.A., Nicola, R.D., Loreti, M.: Programming of CAS systems by relying on attribute-based communication. In: Proceedings of ISOLA 2016, Corfu, Greece, pp. 539–553 (2016). https://doi.org/10.1007/978-3-319-47166-2_38
De Nicola, R., Duong, T., Loreti, M.: ABEL - a domain specific framework for programming with attribute-based communication. In: Proceedings of COORDINATION 2019, Lyngby, Denmark. LNCS, vol. 11533 (2019). https://doi.org/10.1007/978-3-030-22397-7_7
Hennicker, R., Wirsing, M.: A dynamic logic for systems with predicate-based communication. In: Proceedings of ISOLA 2020, Rhodes, Greece. LNCS, vol. 12477 (2020). https://doi.org/10.1007/978-3-030-61470-6_14
De Nicola, R., Maggi, A., Sifakis, J.: The DReAM framework for dynamic reconfigurable architecture modelling: theory and applications. Int. J. Softw. Tools Technol. Transf. 22(4), 437–455 (2020). https://doi.org/10.1007/s10009-020-00555-2
Bliudze, S., Sifakis, J.: The algebra of connectors—structuring interaction in BIP. IEEE Trans. Comput. 57(10), 1315–1330 (2008). https://doi.org/10.1109/TC.2008.26
Chehida, S., Baouya, A., Bensalem, S.: Component-based approach combining UML and BIP for rigorous system design. In: Proceedings of FACS 2021, Virtual Event. LNCS, vol. 13077 (2021). https://doi.org/10.1007/978-3-030-90636-8_2
El Ballouli, R., Bensalem, S., Bozga, M., Sifakis, J.: Programming dynamic reconfigurable systems. Int. J. Softw. Tools Technol. Transf. 23(5), 701–719 (2021). https://doi.org/10.1007/s10009-020-00596-7
Funding
This work has been partially supported by Charles University institutional funding SVV 260698/2023, partially supported by the Czech Science Foundation project 20-24814J, partially supported by the Charles University Grant Agency project 269723, and partially supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No 810115).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Töpfer, M., Abdullah, M., Bureš, T. et al. Machine-learning abstractions for component-based self-optimizing systems. Int J Softw Tools Technol Transfer 25, 717–731 (2023). https://doi.org/10.1007/s10009-023-00726-x
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10009-023-00726-x