Abstract
Many complex patterns are produced by the spatial prisoner’s dilemma, such as spatial games (Nature 1992;359:826–829) and spatial strategies (Artif Life Robotics 2004;9:139–143). We have studied the inverse problem of identifying a game by estimating the parameters in the payoff of the game from spatiotemporal patterns.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Nowak MA, May RM (1992) Evolutionary games and spatial chaos. Nature 359:826–829
Ishida Y, Mori T (2004) Spatial strategies on a generalized spatial prisoner’s dilemma. Artif Life Robotics 9:139–143
Ichise Y, Ishida Y (2008) Reverse engineering of spatial patterns in cellular automata. Artif Life Robotics 13:172–175
von Neumann JJ (1966) Theory of self-reproducing automata. Burks A (ed) University of Illinois Press
Wolfram S (1984) Universality and complexity in cellular automata. Physica D 10:1–35
Author information
Authors and Affiliations
Corresponding author
Additional information
This work was presented in part at the 14th International Symposium on Artificial Life and Robotics, Oita, Japan, February 5–7, 2009
About this article
Cite this article
Ueda, T., Ishida, Y. Reverse engineering of spatiotemporal patterns in the spatial prisoner’s dilemma. Artif Life Robotics 14, 498–501 (2009). https://doi.org/10.1007/s10015-009-0736-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10015-009-0736-4