Abstract
Gaussian process regression (GPR) is one of the non-parametric methods and has been studied in many fields to construct a prediction model for highly non-linear system. It has been difficult to apply it to a real-time task due to its high computational cost but recent high-performance computers and computationally efficient algorithms make it possible. In our previous work, we derived a fast approximation method for GPR using a locality-sensitive hashing (LSH) and product of experts model, but its performance depends on the parameters of the hash functions used in LSH. Hash functions are usually determined randomly. In this research, we propose an optimization method for the parameters of hash functions by referring to a swarm optimization method. The experimental results show that accurate force estimation of an actual robotic arm is achieved with high computational efficiency.






Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Rasmussen CE, Williams CKI (2006) Gaussian processes for machine learning. The MIT Press, Cambridge
Snelson E, Ghahramani Z (2005) Sparse gaussian processes using pseudo-inputs. In: Advances in neural information processing systems 18. MIT press, pp 1257–1264
Quinonero-Candela J, Rasmussen CE (2005) A unifying view of sparse approximate Gaussian process regression. J Mach Learn Res 6:1939–1959
Nguyen-tuong D, Peters J (2008) Local gaussian process regression for real time online model learning and control. Adv Neural Inf Process Syst 22:2008
Ko J, Fox D (2009) GP-bayesfilters: Bayesian filtering using gaussian process prediction and observation models. Auton Robots 27:75–90
Indyk P, Motwani R (1998) Approximate nearest neighbors: towards removing the curse of dimensionality. In: Proceedings of the thirtieth annual ACM symposium on Theory of computing, pp 604–613
Okadome Y, Nakamura Y, Shikauchi Y, et al. (2013) Fast approximation method for Gaussian process regression using hash function for non-uniformly distributed data. In: Artificial Neural Networks and Machine Learning, pp 17–25
Achlioptas D, Database-friendly random projections (2001) In: Proceedings of the twentieth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pp 274–281
Kennedy J, Eberhart R (1995) Particle swarm optimization. IEEE international conference on neural networks, pp 1942–1948
Poli R, Kennedy J, Blackwell T (2007) Particle swarm optimization. Swarm Intell 1(1):33–57
Kashiwagi A, Urabe I, Kaneko K et al. (2006) Adaptive response of a gene network to environmental changes by fitness-induced attractor selection. PLoS One 1(1):e49, 12
Yanagida T, Ueda M, Murata T et al (2007) Brownian motion, fluctuation and life. Biosystems 88(3):228–242
Fukuyori I, Nakamura Y, Matsumoto Y et al (2008) Flexible control mechanism for multi-dof robotic arm based on biological fluctuation. In: From animals to animats 10, Lecture Notes in Computer Science, vol 5040, pp 22–31
Acknowledgments
This research was supported in part by “Program for Leading Graduate Schools” of the Ministry of Education, Culture, Sports, Science and Technology, Japan.
Author information
Authors and Affiliations
Corresponding author
About this article
Cite this article
Okadome, Y., Urai, K., Nakamura, Y. et al. Adaptive LSH based on the particle swarm method with the attractor selection model for fast approximation of Gaussian process regression. Artif Life Robotics 19, 220–226 (2014). https://doi.org/10.1007/s10015-014-0161-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10015-014-0161-1