Skip to main content
Log in

Model reformulation for conflict-free routing problems using Petri Net and Deterministic Finite Automaton

  • Original Article
  • Published:
Artificial Life and Robotics Aims and scope Submit manuscript

Abstract

It is well known that routing problems are recast as a binary integer linear programming in overhead hoist transport (OHT) vehicle systems. Two kinds of discrete-time state space models of the routing problem are proposed in this paper that simplifies the constraints and binary variables. First, a Petri Net (PN) method is used to simplify the constraints. Second, a Deterministic Finite (DF) Automaton method is used for reducing the binary inputs of the state space equation in OHT systems. Finally, some numerical examples are shown to verify the validity of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gartland K (1999) Automated Material Handling System (AMHS) Framework User Requirements Document: Version 1.0, International SEMATECH, Technol. Transfer #99073793A-TR

  2. Liao D-Y, Jeng M-D, Zhou M-C (2007) Application of petri nets and lagrangian relaxation to scheduling automatic material-handling vehicles in 300-mm semiconductor manufacturing. IEEE Trans Syst Man Cybern C 37(4):504–516

    Article  Google Scholar 

  3. Qiu L, Hsu WJ, Huang SY, Wang H (2002) Scheduling and routing algorithm for AGVs: a survey. Int J Prod Res 40(3):745–760

    Article  MATH  Google Scholar 

  4. Vis IFA (2006) Survey of research in the design and control of automated guided vehicle systems. Eur J Oper Res 170(3):677–709

    Article  MATH  MathSciNet  Google Scholar 

  5. Desaulniers G, Langevin A, Riopel D (2003) Dispatching and conflict-free routing of automated guided vehicles: an exact approach. Int J Flex Manuf Syst 15(4):309–331

    Article  Google Scholar 

  6. Kulatunga AK, Liu DK, Dissanayake G, Siyambalapitiya SB (2006) Ant colony optimization based simultaneous task allocation and path planning of autonomous vehicles. In: Proc. CIS

  7. Nishi T, Maeno R (2010) Petri net decomposition approach to optimization of route planning problems for AGV systems. IEEE Trans Autom Sci Eng 7(3):523–537

    Article  Google Scholar 

  8. Zeinaly Y, Schutter BD, Hellendoorn H (2013) An MPC scheme for routing problem in baggage handling systems: a linear programming approach. In: Proc. ICNSC, pp 786–791

  9. Nakamura R, Sawada K, Shin S, Kumagai K, Yoneda H (2013) Simultaneous dispatching and routing for OHT systems via hybrid system modeling. In: Proc. IECON, pp 4416–4421

  10. Nakamura R, Sawada K, Shin S, Kumagai K, Yoneda H (2014) Dispatching and conflict-free routing based on model predictive control in semiconductor fab. In: Proc. CACS, pp 224–229

  11. Williams HP (2013) Model building in mathematical programming, 5th ed. Wiley, Chichester

  12. Murata T (1989) Petri nets: properties, analysis and applications. Proc IEEE 77(4):541–580

    Article  Google Scholar 

  13. Kobayashi K, Imura J (2012) Deterministic finite automata representation for model predictive control of hybrid systems. J Process Cont 22(9):1670–1680

    Article  Google Scholar 

  14. Bemporad A, Morari M (1999) Control of systems integrating logic, dynamics, and constraints. Automatica 35(3):523–537

    Article  MathSciNet  Google Scholar 

  15. http://www.mathworks.com/

  16. http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/

  17. IBM ILOG CPLEX Optimization Studio CPLEX User’s Manual version 12 Release 6

Download references

Acknowledgments

This work was partly supported by JSPS KAKENHI Grant Number 15K06134 and 26420429.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Sawada.

Appendix

Appendix

Suppose that Eq. (2) includes Eq. (1), and Eqs. (5b) and (7) hold. From Eqs. (2) and (8), we get

$$ \hat{x}^{{v_{s} }} \left( {k + 1} \right) = \hat{A} \hat{x}^{{v_{s} }} \left( k \right) + (\hat{B}^{ + } - \hat{B}^{ - } )\widehat{u}^{{v_{s} }} \left( k \right) $$
(25)

for \( s = 1, \ldots ,S \) and 0 ≤ k ≤ M − 1. In addition, \( B^{ + } \widehat{u}^{{v_{s} }} \left( k \right) \ge {\mathbf{0}} \) holds because of B + ∊ {0, 1}n×m and \( \widehat{u}^{{v_{s} }} \left( k \right) \in \left\{ {0,1} \right\}^{m} \). By using Eq. (7) and \( \hat{A}\text{ := }I_{n} \), we get

$$ \begin{aligned} {\mathbf{0}}& \le \hat{x}^{{v_{s} }} \left( k \right) - \hat{B}^{ - } \widehat{u}^{{v_{s} }} \left( k \right) \\ &\le \hat{A} \hat{x}^{{v_{s} }} \left( k \right) + (\hat{B}^{ + } - \hat{B}^{ - } )\widehat{u}^{{v_{s} }} \left( k \right) \hfill \\ \end{aligned} $$
(26)

for \( s = 1, \ldots ,S \) and 0 ≤ k ≤ M - 1. From Eqs. (26) and (8),

$$ \begin{aligned} {\mathbf{0}} &\le \hat{A} \hat{x}^{{v_{s} }} \left( k \right) + \left( {\hat{B}^{ + } - \hat{B}^{ - } } \right)\widehat{u}^{{v_{s} }} \left( k \right) \\ &= \hat{A}_{a} \hat{x}^{v} \left( k \right) + \hat{B}_{a} \widehat{u}^{v} \left( k \right) = \hat{x}^{{v_{s} }} \left( {k + 1} \right). \hfill \\ \end{aligned} $$
(27)

Thus, we get \( \hat{x}^{{v_{s} }} \left( {k + 1} \right) \ge {\mathbf{0}} \), that is, Eq. (4a). Also, from \( \hat{x}^{{v_{s} }} \left( {k + 1} \right) \ge {\mathbf{0}} \), Eqs. (2) and (5b), we obtain

$$ \begin{aligned} \hat{x}^{{v_{s} }} \left( {k + 1} \right) &= \hat{A} \hat{x}^{{v_{s} }} \left( k \right) + \hat{B}\widehat{u}^{{v_{s} }} \left( k \right) \hfill \\ &\le \mathop \sum \limits_{s = 1}^{S} \left\{ {\hat{A} \hat{x}^{{v_{s} }} \left( k \right) + \hat{x}\widehat{u}^{{v_{s} }} \left( k \right)} \right\} \\ &\le \mathbf{1} \hfill \\ \end{aligned} $$
(28)

for \( s = 1, \ldots ,S \) and 0 ≤ k ≤ M − 1. From Eq. (28), we obtain \( \hat{x}^{{v_{s} }} \left( {k + 1} \right) \le {\mathbf{1}} \), that is, Eq. (4b). Therefore, Eqs. (27) and (28) prove Eqs. (2), (5b), and (7) are sufficient conditions for Eq. (4).

Second, from Eqs. (26), (27), and (8), we get

$$ \begin{aligned} &{\mathbf{0}} \le \hat{x}^{{v_{s} }} \left( k \right) - \hat{B}^{ - } \widehat{u}^{{v_{s} }} \left( k \right) \hfill \\ &\le \hat{A}\hat{x}^{{v_{s} }} \left( k \right) + ( \hat{B}^{ + } - \hat{B}^{ - } )\widehat{u}^{{v_{s} }} \left( k \right) \le \hfill \\ &\mathop \sum \limits_{s = 1}^{S} \left\{ {\hat{A} \hat{x}^{{v_{s} }} \left( k \right) + \hat{B}^{{v_{s} }} \widehat{u}\left( k \right)} \right\} \hfill \\ \end{aligned} $$
(29)

for \( s = 1, \ldots ,S \) and 0 ≤ k ≤ M − 1. From Eq. (29), we get \( {\mathbf{0}} \le \mathop \sum \nolimits_{s = 1}^{S} \left\{ {\hat{A} \hat{x}^{{v_{s} }} \left( k \right) + \hat{B}\widehat{u}^{{v_{s} }} \left( k \right)} \right\} \). Thus, this equation proves that Eqs. (2), (5b), and (7) are also sufficient conditions for Eq. (5a).

Finally, consider that Eq. (6b) contributes to the converging and diverging junctions as follows:

$$ \mathop \sum \limits_{s = 1}^{S} \widehat{u}_{c1}^{{v_{s} }} (k) + \widehat{u}_{c2}^{{v_{s} }} (k) \le 1\quad {\text{and}} $$
(30)
$$ \mathop \sum \limits_{s = 1}^{S} \widehat{u}_{d1}^{{v_{s} }} (k) + \widehat{u}_{d2}^{{v_{s} }} (k) \le 1 $$
(31)

for 0 ≤ k ≤ M − 1. \( \widehat{u}_{c1}^{{v_{s} }} \) and \( \widehat{u}_{c2}^{{v_{s} }} \) are the gates of the converging area. \( \widehat{u}_{d1}^{{v_{s} }} \) and \( \widehat{u}_{d2}^{{v_{s} }} \) are also the gates of diverging area. Defining \( \hat{x}_{c}^{{v_{s} }} \) and \( \widehat{u}_{c}^{{v_{s} }} \) as the converging area and its output gate, we see that Eq. (2) includes the following equation:

$$ \hat{x}_{c}^{{v_{s} }} \left( {k + 1} \right) = \hat{x}_{c}^{{v_{s} }} \left( k \right) + \widehat{u}_{c1}^{{v_{s} }} (k) + \widehat{u}_{c2}^{{v_{s} }} (k) - \widehat{u}_{c}^{{v_{s} }} \left( k \right) $$
(32)

for 0 ≤ k ≤ M − 1. From Eqs. (32) and (5b), we obtain

$$ \mathop \sum \limits_{s = 1}^{S} x_{c}^{{v_{s} }} (k + 1) \le 1 $$
$$ \Leftrightarrow \mathop \sum \limits_{s = 1}^{S} \left\{ {\hat{x}_{c}^{{v_{s} }} \left( k \right) + \widehat{u}_{c1}^{{v_{s} }} \left( k \right) + \widehat{u}_{c2}^{{v_{s} }} \left( k \right) - \widehat{u}_{c}^{{v_{s} }} \left( k \right)} \right\} \le 1 $$
(33)

for 0 ≤ k ≤ M − 1. In addition, from Eq. (7), we also obtain

$$ 0 \le \hat{x}_{c}^{{v_{s} }} \left( k \right) - \widehat{u}_{c}^{{v_{s} }} \left( k \right) \le \mathop \sum \limits_{s = 1}^{S} \left\{ { \hat{x}_{c}^{{v_{s} }} \left( k \right) - \widehat{u}_{c}^{{v_{s} }} \left( k \right)} \right\} $$
(34)

For 0 ≤ k ≤ M − 1. Equation (34) proves that \( 0 \le \mathop \sum \nolimits_{s = 1}^{S} \left\{ { \hat{x}_{c}^{{v_{s} }} \left( k \right) - \widehat{u}_{c}^{{v_{s} }} \left( k \right)} \right\} \) holds, and then, Eq. (33) results in

$$ \begin{aligned} &\mathop \sum \limits_{s = 1}^{S} \left\{ {\widehat{u}_{c1}^{{v_{s} }} \left( k \right) + \widehat{u}_{c2}^{{v_{s} }} \left( k \right)} \right\} \\&\quad \le \mathop \sum \limits_{s = 1}^{S} \left\{ { \hat{x}_{c}^{{v_{s} }} \left( k \right) + \widehat{u}_{c1}^{{v_{s} }} \left( k \right) + \widehat{u}_{c2}^{{v_{s} }} \left( k \right) - \widehat{u}_{c}^{{v_{s} }} \left( k \right)} \right\} \le 1 \end{aligned} $$
(35)

for 0 ≤ k ≤ M − 1. Thus, Eq. (35) proves that Eqs. (2), (5b), and (7) are also sufficient conditions for Eq. (30). Defining \( \hat{x}_{d}^{{v_{s} }} \) as the diverging area, we see the following equation from Eq. (7):

$$ \mathop \sum \limits_{s = 1}^{S} \left\{ { \widehat{u}_{d1}^{{v_{s} }} \left( k \right) + \widehat{u}_{d2}^{{v_{s} }} \left( k \right)} \right\} \le \mathop \sum \limits_{s = 1}^{S} \widehat{x}_{d}^{{v_{s} }} \left( k \right) $$
(36)

for 0 ≤ k ≤ M − 1. We obtain Eq. (31) from Eqs. (5b) and (36). This proves that Eqs. (2), (5b), and (7) are also sufficient conditions for Eq. (31).

Therefore, the statement of Lemma 1 holds.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakamura, R., Sawada, K., Shin, S. et al. Model reformulation for conflict-free routing problems using Petri Net and Deterministic Finite Automaton. Artif Life Robotics 20, 262–269 (2015). https://doi.org/10.1007/s10015-015-0215-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10015-015-0215-z

Keywords

Navigation