Skip to main content
Log in

Behavioral pattern of pill bugs revealed in virtually infinite multiple T-maze

  • Original Article
  • Published:
Artificial Life and Robotics Aims and scope Submit manuscript

Abstract

A behavior called turn alternation has been studied extensively in terrestrial isopods. This behavior is seen when they alternate their path choice on successive trials of the T-maze test. We made the multiple T-maze device which consists of two turntables with a T-maze mounted on each and examined the behavior of 36 pill bugs (Armadillidium vulgare) that each completed 130 successive T-maze trials. As a result, in addition to turn alternation, turn repetition (turning in the same direction on two successive turns) appeared at a rate of 20%. In the turn sequences, we observed segments consisting of successive turn alternations and defined the number of turn alternations in a segment as the length of it. Cumulative frequency distribution of segment lengths obeyed power law with exponent of 1.76. This result suggests that pill bugs in the multiple T-maze device behaved as Lévy walkers which forage in an environment, where resources are unpredictably distributed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Dember DW, Richman CL (1989) Spontaneous alternation behavior. Springer, New York

    Book  Google Scholar 

  2. Dingle H (1961) Correcting behavior in boxelder bugs. Ecology 42:207–211

    Article  Google Scholar 

  3. Lepley WM, Rice GE (1952) Behavior variability in paramecia as a function of guided act sequences. J Comp Physiol Psychol 45:283–286

    Article  Google Scholar 

  4. Pate JL, Bell GL (1971) Alternation behavior of children in a cross-maze. Psychon Sci 23:431–432

    Article  Google Scholar 

  5. Dember WN, Earl RW (1957) Analysis of exploratory, manipulatory and curiosity behaviors. Psychol Rev 64:91–96

    Article  Google Scholar 

  6. Estates WK, Schoeffler MS (1955) Analysis of variables influencing alteration after forced trials. J Comp Physiol Psychol 48:357–362

    Article  Google Scholar 

  7. Beal IL, Webster DM (1971) The relevance of leg-movement cues to turn alternation in woodlice (Porcellio scaber). Anim Behav 19:353–356

    Article  Google Scholar 

  8. Hayashi Y (2013), The mechanism of turn alternation in pill bugs. Tsukuba J Biol 12:TJB201307YH

    Google Scholar 

  9. Hughes RN (1967) Turn alternation in woodlice. Anim Behav 15:282–286

    Article  Google Scholar 

  10. Hughes RN (1978) Effects of blinding, antennectomy, food deprivation, and simulated natural conditions on alternation in woodlice (Porcellio scaber). J Biol Psychol 20:35–40

    Google Scholar 

  11. Hughes RN (1985) Mechanisms for turn alternation in woodlice. Anim Learn Behav 13:253–260

    Article  Google Scholar 

  12. Hughes RN (1987) Mechanisms for turn alternation in four invertebrate species. Behav Process 14:89–103

    Article  Google Scholar 

  13. Hughes RN (1989) Essential involvement of specific legs in turn alternation of the woodlouse, Porcellio scaber. Comp Biochem Physiol 93A:493–497

    Article  Google Scholar 

  14. Hughes RN (1989) Tactile cues, bilaterally asymmetrical leg movements, and body distortion in isopod turn alternation. Int J Comp Psychol 2:231–244

    Google Scholar 

  15. Hughes RN (1989) Phylogenic comparison. In: Dember WN, Richman CL (eds) Spontaneous alternation behavior. Springer, New York, pp 39–57

    Chapter  Google Scholar 

  16. Hughes RN (1990) Directional influences of the sixth leg in turn alternation of the terrestrial isopod, Porcellio scaber. Biol Behav 15:169–182

    Google Scholar 

  17. Hughes RN (1992) Effects of substrate brightness differences on isopod (Porcellio scaber) turning and turn alternation. Behav Process 27:95–100

    Article  Google Scholar 

  18. Hughes RN (2008) An intra-species demonstration of the independence of distance and time in turn alternation of the terrestrial isopod, Porcellio scaber. Behav Process 78:38–43

    Article  Google Scholar 

  19. Iwata K, Watanabe M (1957) Alternate turning response in Armadillidium vulgare: 2. Straight moving and turning. Ann Anim Psychol 6:53–56

    Google Scholar 

  20. Iwata K, Watanabe M (1957) Alternate turning response in Armadillidium vulgare: 3. Effect of preceding turn. Ann Anim Psychol 7:57–60

    Article  Google Scholar 

  21. Iwata K, Watanabe M (1957) Alternate turning response in Armadillidium vulgare: 4. Tracks in maze. Zool Mag 66:464–467

    Google Scholar 

  22. Iwata K, Watanabe M (1957) Alternate turning response in Armadillidium vulgare: 5. Sense organ functioning in the response. Zool Mag 66:468–471

    Google Scholar 

  23. Kawai T (2010) Turn alternation in pill bugs (Armadillidium vulgare): effect of path length, orientation, and the number of forced turns. Humanit Rev 60:113–112

    Google Scholar 

  24. Kupfermann I (1966) Turn alternation in the pill bug (Armadillidium vulgare). Anim Behav 14:68–72

    Article  Google Scholar 

  25. Moriyama T (1999) Decision-making and turn alternation in pill bugs (Armadillidium vulgare). Int J Comp Psychol 12:153–170

    Google Scholar 

  26. Moriyama T, Migita M, Mitsuishi M (2016) Self-corrective behavior for turn alternation in pill bugs (Armadillidium vulgare). Behav Process 122:98–103

    Article  Google Scholar 

  27. Ono T, Takagi Y (2006) Turn alternation of the pill bug Armadillidium vulgare and its adaptive significance. Jpn J Appl Entomol Zool 50:325–330

    Article  Google Scholar 

  28. Watanabe M, Iwata K (1956) Alternative turning response of Armadillidium vulgare. Ann Anim Psychol 6:75–82

    Article  Google Scholar 

  29. Viswanathan G, Luz M, da Raposo E, Stanley H (2011) The physics of foraging: an introduction to random searches and biological encounters. Cambridge University Press, Cambridge

    Book  Google Scholar 

  30. Bénichou O, Loverdo C, Moreau M et al (2011) Intermittent search strategies. Rev Mod Phys 83:81–129

    Article  Google Scholar 

  31. Edwards AM, Phillips RA, Watkins NW (2007) Revisiting Lévy flight search patterns of wandering albatrosses, bumblebees and deer search strategies. Nature 449:1044–1048

    Article  Google Scholar 

  32. Viswanathan GM, Afranasyev V, Buldyrev E et al (1996) Lévy flight search patterns of wandering albatrosses. Nature 381:413–415

    Article  Google Scholar 

  33. Humphries NE, Weimerskirch H, Queiroz N et al (2012) Foraging success of biological Lévy flights recorded in situ. Proc Natl Acad Sci USA 109:7169–7174

    Article  Google Scholar 

  34. Reynolds AM, Frye MA (2007) Free-flight odor tracking in Drosophila is consistent with an optimal intermittent scale-free search. PLoS One 2:e354

    Article  Google Scholar 

  35. Zaburdaev V, Denisov S, Klafter J (2015) Lévy walks. Rev Mod Phys 87:483–530

    Article  Google Scholar 

  36. Viswanathan GM, Raposo EP, da Luz MGE (2008) Lévy flights and superdiffusion in random search: the biological encounters context. Phys Life Rev 5:133–162

    Article  Google Scholar 

  37. Boyer D, Ramos-Fernández G, Miramontes O et al. (2006) Scale-free foraging by primates emerges from their interaction with a complex environment. Proc Biol Sci 273:1743–1750

    Article  Google Scholar 

  38. Maye A, Hsieh CH, Sugihara G et al (2007) Order in spontaneous behavior. PLoS One 2:e443 (Giurfa M, editor)

    Article  Google Scholar 

  39. Kölzsch A, Alzate A, Bartumeus F et al (2015) Experimental evidence for inherent Lévy search behaviour in foraging animals. Proc R Soc B 282:2015042

    Article  Google Scholar 

  40. Murakami H, Niizato T, Tomaru T et al (2015) Inherent noise appears as a Lévy walk in fish schools. Sci Rep 5:10605

    Article  Google Scholar 

  41. Nagaya N, Mizumoto N, Abe MS et al (2017) Anomalous diffusion on the servosphere: a potential tool for detecting inherent organismal movement patterns. PLoS One 12:e0177480

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toru Moriyama.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murano, J., Mitsuishi, M. & Moriyama, T. Behavioral pattern of pill bugs revealed in virtually infinite multiple T-maze. Artif Life Robotics 23, 444–448 (2018). https://doi.org/10.1007/s10015-018-0457-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10015-018-0457-7

Keywords