Skip to main content
Log in

Distributed model predictive consensus control for robotic swarm system

Local subsystem regulator approach

  • Original Article
  • Published:
Artificial Life and Robotics Aims and scope Submit manuscript

Abstract

This paper proposes a distributed model predictive control method for a consensus of robotic swarm systems. The proposed method is free from any precomputed trajectories, contrast to previous studies. This is huge advantages in cases the system do not work as previously predicted, communication topology changes frequently, and the communication is unreliable. I introduce a concept of local subsystem regulator first, and then the distributed control method and its design concept are described. I also analyze stability of the proposed method and introduce how to handle constraints such as a mutual collision avoidance into the proposed method. Computer simulations are demonstrated to show effectivity of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Olfati-Saber R, Fax JA, Murray RM (2007) Consensus and cooperation in networked multi-agent systems. Proc IEEE 95(1):215–233

    Article  Google Scholar 

  2. Fukushima H, Kon K, Matsuno F (2005), Distributed model predictive control for multi-vehicle formation with collision avoidance constraints. In: Proceedings of IEEE Conference on Decision Control, pp 5480–5485

  3. Dunbar WB, Murray RM (2006) Distributed receding horizon control for multi-vehicle formation stabilization. Automatica 42(4):549–558

    Article  MathSciNet  Google Scholar 

  4. Keviczky T, Borrelli F, Fregene K et al (2008) Decentralized receding horizon control and coordination of autonomous vehicle formations. IEEE Trans Control Syst Tech 16(1):19–33

    Article  Google Scholar 

  5. Kuriki Y, Namerikawa T (2015) Formation control with collision avoidance for a multi-UAV system using decentralized MPC and consensus-based control. SICE J Control Meas Syst Integr 8(4):285–294

    Article  Google Scholar 

  6. van den Berg J, Guy SJ, Lin M, Manocha D (2008) Reciprocal velocity obstacles for real-time multi-agent navigation. In: Proceedings of IEEE conference on robotics and automation, pp 1928–1935

  7. Murayama T (2016) Distributed velocity constraints for multi-agent system to preserve communication range. In: Proceedings on 2016 IEEE/SICE international symposium on system integration, pp 532–537

  8. Mattingley J, Boyd S (2012) CVXGEN: a code generator for embedded convex optimization. Optim Eng 13(1):1–27

    Article  MathSciNet  Google Scholar 

  9. Chung F (1997) Spectral graph theory. American mathematical society, Providence

    MATH  Google Scholar 

  10. Mayne DQ, Rawlings JB, Rao CV, Scokaert POM (2000) Constrained model predictive control: stability and optimality. Automatica 36:789–814

    Article  MathSciNet  Google Scholar 

  11. Grimm G, Messina MJ, Tuna SE, Teel AR (2005) Model predictive control: for want of a local control Lyapunov function, all is not lost. IEEE Trans Autom 50(5):546–558

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toru Murayama.

A Proof of Theorem 1

A Proof of Theorem 1

The whole system can be written as

$$\begin{aligned} x(t+1) = ( I_{N}\otimes A - \frac{1}{2}{\mathcal {L}}_{\mathrm {rw}} \otimes BK)x(t)+(I_{N}\otimes B)\varepsilon (t), \end{aligned}$$
(28)

where \({\mathcal {L}}_{\mathrm {rw}}\) denotes a random-walk normalized Laplacian matrix defined as \({\mathcal {L}}_{\mathrm {rw}}={\mathcal {D}}^{-1}{\mathcal {L}}\). Using a linear transformation \(\xi = (X^{-1}\otimes I_{n_{s}})x\) and \(\eta = (X^{-1}\otimes I_{n_{r}})\varepsilon\) with the matrix X diagonalizing \({\mathcal {L}}_{\mathrm {rw}}\) such that \(\Lambda =X^{-1}{\mathcal {L}}_{\mathrm {rw}}X\), we get

$$\begin{aligned} \xi (t+1) = ( I_{N}\otimes A - \frac{1}{2} \Lambda \otimes BK)\xi (t)+\frac{1}{2}(I_{N}\otimes B)\eta (t), \end{aligned}$$
(29)

with \(\Lambda = {\mathrm {diag}}(\lambda _{1,{\mathrm {rw}}},\ldots ,\lambda _{N,{\mathrm {rw}}})\). Here \(\xi \triangleq (\xi _{1},\ldots ,\xi _{N})^{\mathrm {T}}\) indicates \(\xi _{1}=\sum _{i}x_{i}/\sqrt{N}\) is average (or sum) of the agents states \(x_{i}\) and the others \(\xi _{i},i\ge 2\) are orthogonal to \(\xi _{1}\). Therefore, if \(\xi _{i},^{\forall }i\ge 2\) converge to zero, then the state x converges to the consensus manifold \({\mathcal {M}}\).

Applying the same translation to the assumption Eq. (18) as

$$\begin{aligned}&\sum _{i=1}^{N} \Vert (A-BK){\tilde{e}}_{i}(t)+B\varepsilon _{i}(t) \Vert \nonumber \\&= \Vert (I_{N}\otimes (A-BK)) {\tilde{e}}(t) + (I_{N}\otimes B) \varepsilon (t) \Vert \nonumber \\&= \Vert ({\mathcal {L}}_{\mathrm {rw}} \otimes (A-BK)) x(t) + (I_{N}\otimes B) \varepsilon (t) \Vert \nonumber \\&= \Vert (\Lambda \otimes (A-BK)) \xi (t) + (I_{N}\otimes B) \eta (t) \Vert \nonumber \\&= \sum _{i=1}^{N} \Vert \lambda _{i,{\mathrm {rw}}}(A-BK)\xi _{i}(t)+B\eta _{i}(t) \Vert \nonumber \\&\le \sum _{i=1}^{N} \beta \Vert {\tilde{e}}_{i}(t) \Vert = \beta \Vert ({\mathcal {L}}_{\mathrm {rw}} \otimes I_{n_{s}}) x(t) \Vert = \beta \Vert ( \Lambda \otimes I_{n_{s}}) \xi (t) \Vert \nonumber \\&= \sum _{i=1}^{N} \beta \Vert \lambda _{i,{\mathrm {rw}}} \xi _{i}(t) \Vert , \end{aligned}$$
(30)

we get

$$\begin{aligned} \sum _{i=2}^{N} \Vert \lambda _{i,{\mathrm {rw}}}(A-BK)\xi _{i}(t)+B\eta _{i}(t) \Vert \le \sum _{i=2}^{N} \beta \Vert \lambda _{i,{\mathrm {rw}}} \xi _{i}(t) \Vert , \end{aligned}$$
(31)

since \(\lambda _{1,{\mathrm {rw}}} =0\). Then, the norm of the translated states satisfies

$$\begin{aligned}&\sum _{i=2}^{N} \Vert \xi _{i}(t+1) \Vert = \sum _{i=2}^{N} \Vert (A-\frac{\lambda _{i,{\mathrm {rw}}}}{2}BK)\xi _{i}(t)+\frac{1}{2}B\eta _{i}(t) \Vert \nonumber \\&\quad \le \sum _{i=2}^{N} \left( \Vert (1-\frac{\lambda _{i,{\mathrm {rw}}}}{2}) A\xi _{i}(t)\Vert \right. \nonumber \\&\qquad \left. + \frac{1}{2} \Vert \lambda _{i,{\mathrm {rw}}}(A-BK)\xi _{i}(t)+B\eta _{i}(t) \Vert \right) \nonumber \\&\quad \le \sum _{i=2}^{N} \left( (1-\frac{\lambda _{i,{\mathrm {rw}}}}{2}) \Vert \xi _{i}(t) \Vert + \beta \frac{\lambda _{i,{\mathrm {rw}}}}{2} \Vert \xi _{i}(t) \Vert \right) , \nonumber \\&\quad \le \sum _{i=2}^{N} \left( 1-(1-\beta )\frac{\lambda _{i,{\mathrm {rw}}}}{2}\right) \Vert \xi _{i}(t) \Vert , \end{aligned}$$
(32)

because \(\lambda _{i,{\mathrm {rw}}}\in (0,2],^{\forall }i\ge 2\) (this is easily derived from eigenvalues of a symmetric normalized Laplacian \({\mathcal {L}}_{\mathrm {sym}}={\mathcal {D}}^{-1/2}{\mathcal {L}}{\mathcal {D}}^{-1/2}\), see [9]). This fact suggests the states \(\xi _{i}\) orthogonal to the consensus manifold \({\mathcal {M}}\) converge to 0, thus we conclude x(t) converges to \({\mathcal {M}}\) as \(t\rightarrow 0\). \(\square\)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murayama, T. Distributed model predictive consensus control for robotic swarm system. Artif Life Robotics 23, 628–635 (2018). https://doi.org/10.1007/s10015-018-0499-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10015-018-0499-x

Keywords

Navigation