Skip to main content
Log in

Control system for automatic search and transportation of an object by a mobile robot using image processing

  • Original Article
  • Published:
Artificial Life and Robotics Aims and scope Submit manuscript

Abstract

In this paper, a control system of a mobile robot for automatic search and transportation of an object is developed. The control system is constructed using image processing and distance measurement. The system has two functions of automatic search and transportation. The targets are detected by HSV color recognition using camera image. The autonomous control is realized based on proportional integral control law to determine the angular velocity, where the control error is calculated using the image information and the angle-pixel characteristics. The effectiveness of the control system considered in this paper was confirmed through experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. Sheridan T (1995), Teleoperation, telerobotics and telepresence: a progress report. Control Eng Pract 3(2), 205–214

    Article  Google Scholar 

  2. Hutchinson S, Hager G, Corke P (1996), A tutorial on visual servo control. IEEE Transactions on Robotics and Automation 12(5), 651–670

    Article  Google Scholar 

  3. Zhao W, Chen W (2021) Hierarchical POMDP planning for object manipulation in clutter. Robot Auton Syst 139:103736

    Article  Google Scholar 

  4. Ribeiro EG, Mendes RdQ, Grassi V (2021) Real-time deep learning approach to visual servo control and grasp detection for autonomous robotic manipulation. Robot Auton Syst 139:103757

    Article  Google Scholar 

  5. Aoki T, Oka T, Hayakawa S, Suzuki T, Okuma S (1997) Experimental study on autonomous mobile robot acquiring optimal action to avoid moving obstacles. Artif Life Robot 1:205–210

    Article  Google Scholar 

  6. Giap NH, Shin JH, Kim WH (2008) Adaptive robust fuzzy control for path tracking of a wheeled mobile robot. Artif Life Robot 13:134–138

    Article  Google Scholar 

  7. Guo JH, Su KL, Wu CJ, Shiau SV (2009) Motion planning for mobile robots using a laser range finder. Artif Life Robot 14:257

    Article  Google Scholar 

  8. Hayashi E (2008) Navigation system for an autonomous robot using an ocellus camera in an indoor environment. Artif Life Robot 12:346–352

    Article  Google Scholar 

  9. Hayashi E, Kinoshita T (2009) Development of an indoor navigation system for a monocular-vision-based autonomous mobile robot. Artif Life Robot 14:324

    Article  Google Scholar 

  10. Kinoshita T, Hayashi E (2008) Development of distance recognition using an ocellus camera for an autonomous personal robot. Artif Life Robot 13:346–349

    Article  Google Scholar 

  11. Mizokami R, Tabuchi Y, Abe N, Taki H, He S (2009) Prowling autonomous mobile robot with a network camera. Artif Life Robot 13:447–450

    Article  Google Scholar 

  12. Shiau SV, Su KL, Wang CC, Guo JH (2011) Path planning of a multiple mobile robot system. Artif Life Robot 16:5–9

    Article  Google Scholar 

  13. Wang L (2019) Automatic control of mobile robot based on autonomous navigation algorithm. Artif Life Robot 24:494–498

    Article  Google Scholar 

  14. Zunaidi I, Kato N, Nomura Y, Matsui H (2006) Path planning based on geographical features information for an autonomous mobile robot. Artif Life Robot 10:149–156

    Article  Google Scholar 

  15. Matsuda Y, Sugi T, Goto S, Egashira N (2017), Teleoperation system for a mobile robot with visual servo mechanism based on automatic template generation. Artif Life Robot 22(4), 490–496

    Article  Google Scholar 

  16. Matsuda Y, Tagami N, Sugi T, Goto S, Egashira N (2018), Teleoperation system for a mobile robot with visual servomechanism based on turning radius determination using angle information of image. Artif Life Robot 24(1), 106–113

    Article  Google Scholar 

  17. Sato Y, Matsuda Y, Sugi T, Goto S, Egashira N (2019) Development of an autonomous control system for object gripping by mobile manipulator based on image processing. In: Proceedings of The Twenty-Fourth International Symposium on artificial life robot, B-Con Plaza, GS17-2, January 23–25, 2019, 446–449

  18. Sato Y, Matsuda Y, Sugi T, Goto S, Egashira N (2020) Development of autonomous control system for object transportation by a mobile manipulator based on image processing. In: Proceedings of The Twenty-Fifth International Symposium on Artificial Life Robot, B-Con Plaza, GS14-3, January 22–24, 2020, 376–380

  19. Bradski G, Kaehler A (2008) Learning OpenCV: computer vision with the Open CV library. O’Reilly Media, Sebastopol

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshitaka Matsuda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsuda, Y., Sato, Y., Sugi, T. et al. Control system for automatic search and transportation of an object by a mobile robot using image processing. Artif Life Robotics 26, 465–472 (2021). https://doi.org/10.1007/s10015-021-00690-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10015-021-00690-2

Keywords

Navigation