Skip to main content
Log in

Generation of virtual creatures under multidisciplinary biological premises

  • Original Article
  • Published:
Artificial Life and Robotics Aims and scope Submit manuscript

Abstract

Artificial life is an open topic that seeks to create artificial entities capable of mimicking biological life or, where appropriate, improve it. Within virtual environments, we find entities known as virtual creatures that inhabit them. These entities interact directly with the environment in which they are immersed, thus adapting to the conditions and generating ecosystems as complex as those observed in nature. As it happens in nature, creatures will have varying degrees of adaptation to the ecosystem and will be the parents of the following generations to maintain the species. This inherent adaptation and selective procedure will define the creatures’ morphological structures. The emergence of particular behaviors within virtual creatures is observed in their problem-solving in the environment. In this research, the creation of virtual creatures is explored under the premises of biological life and related disciplines, focusing on the construction of morphologies. Understanding the processes of life, then, aids in the construction of artifacts that improve human life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adam C, Bryson D, Otria C, Pennock R. (eds.) (2012) Open ended evolution of 3D multicellular development controlled by gene regulatory networks. ALIFE 2021: The 2021 Conference on Artificial Life, vol. ALIFE 2012: The Thirteenth International Conference on the Synthesis and Simulation of Living Systems. https://doi.org/10.1162/978-0-262-31050-5-ch010

  2. Amthor FR, Theibert AB, Standaert DG, Roberson ED (eds) (2020) Essentials of Modern Neuroscience. McGraw Hill, New York, NY

  3. Arita T, Joachimczak M, Ito T, Asakura A, Suzuki R (2016) Alife approach to eco-evo-devo using evolution of virtual creatures. Artif Life Robot 21(2):141–148

    Article  Google Scholar 

  4. Baum D (2008) Trait evolution on a phylogenetic tree: relatedness, similarity, and the myth of evolutionary advancement. Nat Educ 1(1):191

    Google Scholar 

  5. Bedau MA, Packard NH (1992) Measurement of evolutionary activity, teleology, and life. In: C. Langton, C. Taylor, J. Farmer, S. Rasmussen (eds.) Proceedings of Artificial Life II, pp 431–461, Addison-Wesley

  6. Bentley P, Kumar S (1999) Three ways to grow designs: A comparison of embryogenies for an evolutionary design problem. In: x, Proceedings of the Genetic and Evolutionary Computation Conference, vol 99, pp 35–43

  7. Cariani P (1992) Emergence and Artificial Life. In: C. Langton, C. Taylor, J. Farmer, S. Rasmussen (eds.) Proceedings of Artificial Life II, pp 775–797. Addison-Wesley

  8. Dellaert F, Beer RD (1994) Co-evolving body and brain in autonomous agents using a developmental model. Cleveland, OH 44106

  9. Dellaert F, Beer RD (1996) A developmental model for the evolution of complete autonomous agents. In: Proceedings of the fourth international conference on simulation of adaptive behavior, pp. 393–401. MIT Press Cambridge, MA

  10. Doncieux S, Bredeche N, Mouret J, Eiben A (2015) Evolutionary robotics: what, why, and where to. Front Robot AI 2:4

    Article  Google Scholar 

  11. Eiben AE, Smith JE et al (2010) Introduction to evolutionary computing. Springer, New York

  12. Eichhorst P, Savitch W (1980) Growth functions of stochastic lindenmayer systems. Inf Control 45(3):217–228

    Article  MathSciNet  Google Scholar 

  13. Gardner M (1970) Mathematical games. Sci Am 223(4):120–123

    Article  Google Scholar 

  14. Gravina D, Liapis A, Yannakakis G. (2016)Surprise search: Beyond objectives and novelty. In: Proceedings of the Genetic and Evolutionary Computation Conference 2016, pp. 677–684

  15. Gravina, D., Liapis, A., Yannakakis, G.N.: Fusing novelty and surprise for evolving robot morphologies. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 93–100 (2018)

  16. Griffiths AJ, Wessler SR, Lewontin RC, Gelbart WM, Suzuki DT, Miller JH et al (2000) An introduction to genetic analysis. Freeman, W. H

  17. Hintze A (2019) Open-endedness for the sake of open-endedness. Artif Life 25(2):198–206

    Article  Google Scholar 

  18. Hooper J, Scott M. (1992)The molecular genetic basis of positional information in insect segments. In: Early embryonic development of animals, pp. 1–48. Springer

  19. Ito T, Pilat M, Suzuki R, Arita T (2013) ALife approach for body-behavior predator-prey coevolution: body first or behavior first? Artificial Life and Robotics 18(1–2):36–40

    Article  Google Scholar 

  20. Ito T, Pilat M, Suzuki R, Arita T.(2013) Coevolutionary dynamics caused by asymmetries in predator-prey and morphology-behavior relationships. In: Artificial Life Conference Proceedings 13, pp. 439–445. MIT Press

  21. Ito T, Pilat M, Suzuki R, Arita T (2016) Population and evolutionary dynamics based on predator-prey relationships in a 3d physical simulation. Artif Life 22(2):226–240

    Article  Google Scholar 

  22. Jacob C, Von Mammen S (2007) Swarm grammars: growing dynamic structures in 3d agent spaces. Digital Creativity 18(1):54–64

    Article  Google Scholar 

  23. Joachimczak M, Suzuki R, Arita T (2016) Artificial metamorphosis: Evolutionary design of transforming, soft-bodied robots. Artif Life 22(3):271–298

    Article  Google Scholar 

  24. Joachimczak M, Wróbel B.(2011) Evolution of the morphology and patterning of artificial embryos: Scaling the tricolour problem to the third dimension. In: G. Kampis, I. Karsai, E. Szathmáry (eds.) Advances in Artificial Life. Darwin Meets von Neumann, pp. 35–43. Springer Berlin Heidelberg, Berlin, Heidelberg

  25. Komosiński M, Ulatowski S.(1999) Framsticks: Towards a simulation of a nature-like world, creatures and evolution. In: European Conference on Artificial Life, pp. 261–265. Springer

  26. Kriegman S, Cheney N, Bongard J (2018) How morphological development can guide evolution. Sci Rep 8(1):1–10

    Google Scholar 

  27. Kriegman, S., Cheney, N., Corucci, F., Bongard, J.C.: A minimal developmental model can increase evolvability in soft robots. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO ’17, p. 131–138. Association for Computing Machinery, New York, NY, USA (2017). 10.1145/3071178.3071296

  28. Lai G, Leymarie F.F, Latham W, Arita T, Suzuki R.(2021) Virtual creature morphology-a review. In: Computer Graphics Forum, vol. 40, pp. 659–681. Wiley Online Library

  29. Latosiński G.(2018) Development and comparison of genetic representations for evolving 3d structures. Master’s thesis, Poznan University of Technology, Institute of Computing Science

  30. Lehman J, Stanley KO (2011) Abandoning objectives: Evolution through the search for novelty alone. Evol Comput 19(2):189–223

    Article  Google Scholar 

  31. Lessin D, Fussell D, Miikkulainen R.(2014) Trading control intelligence for physical intelligence: Muscle drives in evolved virtual creatures. In: Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation, pp. 705–712. ACM

  32. Lessin D, Risi S.(2015) Soft-body muscles for evolved virtual creatures: the next step on a bio-mimetic path to meaningful morphological complexity. In: Artificial Life Conference Proceedings 13, pp. 604–611. MIT Press

  33. von Mammen, S., Edenhofer, S.: Swarm grammars gd: Interactive exploration of swarm dynamics and structural development. In: ALIFE 14: The Fourteenth International Conference on the Synthesis and Simulation of Living Systems, pp. 312–319. MIT Press (2014)

  34. Marfenin N, Kosevich I (2004) Morphogenetic evolution of hydroid colony pattern. Hydrobiologia 530(1–3):319–327

    Google Scholar 

  35. McIntosh C (2013) Cambridge Advanced Learner’s Dictionary. Cambridge University Press, Cambridge

  36. Miras K, Eiben A.(2019) Effects of environmental conditions on evolved robot morphologies and behavior. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 125–132

  37. Pilat M, Ito T, Suzuki R, Arita T.(2012) Evolution of virtual creature foraging in a physical environment. In: Artificial Life Conference Proceedings 12, pp. 423–430. MIT Press

  38. Pilat M, Jacob C.(2008) Creature academy: A system for virtual creature evolution. In: 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence), pp. 3289–3297. IEEE

  39. Prusinkiewicz P, Lindenmayer A.(2012) The algorithmic beauty of plants. Springer Science and Business Media

  40. Przemyslaw P, Prusinkiewicz P, Lindenmayer A, Hanan J.(1988) Developmental models of herbaceous plants for computer imagery purposes. Computer Graphics 22(4)

  41. Purves D (2018) Neuroscience. Oxford University Press, New York

  42. Raies Y, Mammen S.v.(2021) A swarm grammar-based approach to virtual world generation. In: International Conference on Computational Intelligence in Music, Sound, Art and Design (Part of EvoStar), pp. 459–474. Springer

  43. Ray T.S.(1991) An approach to the synthesis of life. Artificial life II, 371–408

  44. Sayama H, Rieffel J, Risi S, Doursat R, Lispon H. (eds.):(2014) Fine Grained Artificial Development for Body-Controller Coevolution of Soft-Bodied Animats, ALIFE 2021: The 2021 Conference on Artificial Life, vol. ALIFE 14: The Fourteenth International Conference on the Synthesis and Simulation of Living Systems . 10.1162/978-0-262-32621-6-ch040

  45. Sherman W.R, Craig A.B.(2003) CHAPTER 1 - Introduction to Virtual Reality. In: W.R. Sherman, A.B. Craig (eds.) Understanding Virtual Reality, The Morgan Kaufmann Series in Computer Graphics, pp. 5–37. Morgan Kaufmann, San Francisco . 10.1016/B978-155860353-0/50001-X

  46. Sims K.(1994) Evolving virtual creatures. In: Proceedings of the 21st annual conference on Computer graphics and interactive techniques, pp. 15–22

  47. Stanley KO, Miikkulainen R (2003) A taxonomy for artificial embryogeny. Artif Life 9(2):93–130

    Article  Google Scholar 

  48. Turing A (1990) The chemical basis of morphogenesis. Bull Math Biol 52(1–2):153–197

    Article  Google Scholar 

  49. Von Mammen S, Jacob C (2009) The evolution of swarm grammars-growing trees, crafting art, and bottom-up design. IEEE Comput Intell Mag 4(3):10–19

    Article  Google Scholar 

  50. Watson RA, Ficici SG, Pollack JB (2002) Embodied evolution: Distributing an evolutionary algorithm in a population of robots. Robot Auton Syst 39(1):1–18

    Article  Google Scholar 

  51. Wooldridge M.(2009) An introduction to multiagent systems. John Wiley & Sons

Download references

Acknowledgements

This research is possible thanks to the National Council for Science and Technology (CONACYT)’s national scholarship program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Mercado.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mercado, R., Mun̄oz-Jiménez, V., Ramos, M. et al. Generation of virtual creatures under multidisciplinary biological premises. Artif Life Robotics 27, 495–505 (2022). https://doi.org/10.1007/s10015-022-00767-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10015-022-00767-6

Keywords

Navigation