Skip to main content
Log in

An oscillatory neuromotor model of handwriting generation

  • ORIGINAL PAPER
  • Published:
International Journal of Document Analysis and Recognition (IJDAR) Aims and scope Submit manuscript

Abstract

A neuromotor model of handwritten stroke generation, in which stroke velocities are expressed as a Fourier-style decomposition of oscillatory neural activities, is presented. The neural network architecture consists of an input or stroke-selection layer, an oscillatory layer, and the output layer where stroke velocities are estimated. A separate timing network prepares the network’s initial state, which is crucial for accurate stroke generation. Neurobiological significance of this preparation, and a possible mapping of our architecture onto human motor system is suggested. Interaction between timing network and oscillatory layer closely resembles interaction between Basal Ganglia and Supplementary Motor Area in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ellis, A.W., Modeling the writing process. In: Denes, G., Semenza, C., Bisiacchi, P., Andreewsky, E. (eds.) Perspectives in Cognitive Neuropsychology. Erlbaum, London (1986)

  2. Teulings, H.L., Thomassen, A.J.W.M., Schomaker, L.R.B., Morasso, P.: Experimental protocol for cursive script acquisition: the use of motor information for the automatic recognition of cursive script. In: Report 3.1.2., ESPRIT Project, 419 (1986)

  3. Schomaker, L.R.B.: Simulation and recognition of handwriting movements: a vertical approach to modeling human motor behavior. Ph.D. Thesis, Nijmegen University, Netherlands (1991)

  4. Plamondon R. (1989). An evaluation of motor models of handwriting. IEEE Trans. Syst. Man Cybern. 19(5): 1060–1072

    Article  Google Scholar 

  5. Grossberg S. and Paine R.W. (2000). A neural model of corticocerebellar interactions during attentive imitation and predictive learning of sequential handwriting movements. Neural Netw. 13: 999–1046

    Article  Google Scholar 

  6. Hollerbach J.M. (1981). An oscillation theory of handwriting. Biol. Cybern. 156(39): 139

    Article  Google Scholar 

  7. Kalveram, K.Th.: A neural oscillator model learning given trajectories, or how an allo-imitation algorithm can be implemented into a motor controller. In: Piek, J. (ed) Motor Control and Human Skill: A Multi-disciplinary Perspective. Human Kinetics, Champaign (1998)

  8. Galen G.V. and Weber J. (1998). On-line size control in handwriting demonstrates the continuous nature of motor programs. Acta Psychol. 100: 195–216

    Article  Google Scholar 

  9. Bullock, D., Grossberg, S.: The VITE: a neural command circuit for generating arm and articulator trajectories. In : Kelso, A., Shlesinger, M.M. (eds) Dynamic Patterns in Complex Systems. World Scientific, Singapore (1988)

  10. Fiala J., Grossberg S. and Bullock D. (1996). Metabotropic glutamate receptor activation in cerebellar Purkinje cells as substrate for adaptive timing of the classically conditioned eye-blink response. J. Neurosci. 16: 3760–3774

    Google Scholar 

  11. Chirikov B. (1979). A universal instability of many—dimensional oscillator systems. Phy. Rev. 52: 263–379

    MathSciNet  Google Scholar 

  12. Bressloff, P.C., Coombes, S., Souza, B.: Dynamics of a ring of pulse-coupled oscillators: group theoretic approach. Phys. Rev. E Stat Nonlin Soft Matter Phys 66, (2002)

  13. Haykin, S., Neural Networks: A Comprehensive Foundation, Prentice Hall PTR, Englewood Cliffs (1998)

  14. Latash M.L., Scholz J.F., Danion F. and Schöner G. (2001). Structure of motor variability in marginally redundant multi-finger force production tasks. Exp. Brain Res. 141: 153–165

    Article  Google Scholar 

  15. Marder E. and Calabrese R.L. (1996). Principles of rhythmic motor pattern production. Physiol. Rev. 76: 687–717

    Google Scholar 

  16. Chakravarthy, V.S., Thomas, S.T., Nair, N.: A model for scheduling motor unit recruitment in skeletal muscle. In: Proceedings of International Conference Theoretical Neurobio, Gurgoan (2003)

  17. Kornhuber H.H. and Deecke L. (1990). Readiness for movement—the Bereitschafts potential-story. Curr. Contents Life Sci. 33: 22

    Google Scholar 

  18. Lang W., Cheyne R., Kristeva R., Beistener R., Lindinger G. and Deeke L. (1991). Three dimensional localization of SMA activity preceding voluntary movement: a study of electric and magnetic fields in a patient with inflation of the right supplementary motor area. Exp. Brain Res. 87: 688–695

    Article  Google Scholar 

  19. Georgopoulos A.P., Lurito J.T., Petrides M., Schwartz A.B. and Massey J.T. (1989). Mental rotation of the neuronal population vector. Science 243: 234–236

    Article  Google Scholar 

  20. Kubota K. and Hamada I. (1978). Visual tracking and neuron activity in the post—arcurate area in monkeys. J. Physiol. Paris. 74: 297–312

    Google Scholar 

  21. Kubota K. and Funahashi S. (1982). Neuron activities of monkey prefrontal cortex during the learning of visual discriminations tasks with go/no-go performances. Neurosci. Res. 3: 106–129

    Article  Google Scholar 

  22. Crammond D.J. and Kalaska J.F. (1989). Neuronal activity in primate parietal cortex area 5 varies with intended movement direction during an instructed—delay period. Exp. Brain Res. 76: 458–462

    Article  Google Scholar 

  23. Alexander G.E. (1987). Selective neuronal discharge in monkey putamen reflects intended direction of planned limb movements. Exp. Brain Res. 67: 623–634

    Article  Google Scholar 

  24. Churchland M.M., Yu B.M., Ryu S.I., Santhanam G. and Shenoy K. (2006). Neural variability in premotor cortex provides a signature of motor preparation. J. Neurosci. 26(14): 3697–3712

    Article  Google Scholar 

  25. Tanji J. (1994). The supplementary motor area in the cerebral cortex. Neurosci. Res. 19(3): 251–268

    Article  Google Scholar 

  26. Tanji J., Taniguchi K. and Saga T. (1980). Supplementary motor area: neuronal response to motor instructions. J. Neurophysiol. 43: 60–68

    Google Scholar 

  27. Aizawa H. and Tanji J. (1994). Cortico-cortical and thalamo-cortical responses of neurons in the monkey primary motor cortex and their relation to a trained motor task. J. Neurophysiol. 71: 550–560

    Google Scholar 

  28. Buhusi C.V. and Meck W.H. (2005). What makes us tick? Functional and neural mechanisms of interval timing. Nat. Rev. Neurosci. 6: 755

    Article  Google Scholar 

  29. Matell M.S. and Meck W.H. (2004). Cortico-striatal circuits and interval timing: coincidence detection of oscillatory processes. Cogn. Brain Res. 21: 139–170

    Article  Google Scholar 

  30. Cunnington R., Iansek R., Bradshaw J.A. and Phillips J.G. (1995). Movement-related potentials in Parkinson’s disease. Presence and predictability of temporal and spatial cues. Brain 118: 935–950

    Article  Google Scholar 

  31. Georgiou N., Iansek R., Bradshaw J.L., Phillips J.G. and Mattingley J.B. (1993). An evaluation of the role of internal cues in the pathogenesis of Parkinsonian hypokinesia. Brain 116: 1575–1587

    Article  Google Scholar 

  32. Kao M.H., Doupe A.J. and Brainard M.S. (2005). Contributions of an avian basal ganglia-forebrain circuit to real-time modulation of song. Nature 433(7026): 638–643

    Article  Google Scholar 

  33. Rusu, A., Govindaraju, V.: Handwritten CAPTCHA: using the difference in the abilities of humans and machines in reading handwritten words, IWFHR, pp. 226–231. In: 9th International Workshop on Frontiers in Handwriting Recognition (IWFHR’04) (2004)

  34. Perko L. (2006). Differential Equations and Dynamical. Springer, Heidelberg

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Srinivasa Chakravarthy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gangadhar, G., Joseph, D. & Chakravarthy, V.S. An oscillatory neuromotor model of handwriting generation. IJDAR 10, 69–84 (2007). https://doi.org/10.1007/s10032-007-0046-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10032-007-0046-0

Keywords

Navigation