Skip to main content
Log in

Multifont size-resilient recognition system for Ethiopic script

  • Original Paper
  • Published:
International Journal of Document Analysis and Recognition (IJDAR) Aims and scope Submit manuscript

Abstract

This paper presents a novel framework for recognition of Ethiopic characters using structural and syntactic techniques. Graphically complex characters are represented by the spatial relationships of less complex primitives which form a unique set of patterns for each character. The spatial relationship is represented by a special tree structure which is also used to generate string patterns of primitives. Recognition is then achieved by matching the generated string pattern against each pattern in the alphabet knowledge-base built for this purpose. The recognition system tolerates variations on the parameters of characters like font type, size and style. Direction field tensor is used as a tool to extract structural features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amin, A.: Offline Arabic character recognition—a survey. Proc. IEEE, pp. 596–599 (1997)

  2. Amor, N.B., Amara, N.B.: Multifont Arabic character recognition using Hough transform and hidden Markov models. In: Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis (ISPA’05), Zagreb, Croatia, pp. 285–288

  3. Arica N. and Yarman-Vural F.T. (2001). An overview of character recognition focused on off-line handwriting. IEEE Trans. on Systems, Man and Cybernetics 31(2): 216–233

    Article  Google Scholar 

  4. Basu M., Bunke H. and Bimbo A. (2005). Guest Editors’ introduction to the special section on syntactic and structural pattern recognition. IEEE-TPAMI 27(7): 1009–1012

    Google Scholar 

  5. Bender M. (1976). Language in Ethiopia. Oxford University Press, London

    Google Scholar 

  6. Bigun J. (2006). Vision with Direction: A Systematic Introduction to Image Processing and Vision. Springer, Heidelberg

    Google Scholar 

  7. Bigun J., Bigun T. and Nilsson K. (2004). Recognition by symmetry derivatives and the generalized structure tensor. IEEE-TPAMI 26(2): 1590–1605

    Google Scholar 

  8. Bigun, J., Granlund, G.H.: Optimal orientation detection of linear symmetry. In: Proceedings of IEEE First International Conference on Computer Vision. London, pp. 433–438 (1987)

  9. Bunke H. (1990). Hybrid pattern recognition methods. In: Bunke, H. and Sanfeliu, A. (eds) Syntactic and Structural Pattern Recognition: Theory and Applications, pp. World Scientific, Singapore

    Google Scholar 

  10. Bunke, H.: Recognition of cursive roman handwriting—past, present and future. In: Proceedings of the 7th International Conference on Document Analysis and Recognition, vol. 1, Edinburgh, 2003, pp. 448–459

  11. Bunke H. (1990). String matching for structural pattern recognition. In: Bunke, H. and Sanfeliu, A. (eds) Syntactic and Structural Pattern Recognition: Theory and Applications, pp. World Scientific, Singapore

    Google Scholar 

  12. Chen, C.H., DeCurtines, J.L.: Word Recognition in a Segmentation-free Approach to OCR. Proc. IEEE, pp. 573–576 (1993)

  13. Cowell, J., Hussain, F.: Amharic character recognition using a fast signature based algorithm. In: Proceedings of Fourth International Conference on Information Visualization, pp. 384–389 (2003)

  14. Dreyfus G. (2005). Neural Networks: Methodology and Applications. Springer, Heidelberg

    MATH  Google Scholar 

  15. Dutta A. and Chaudhury S. (1993). Bengali alpha-numeric character recognition using curvature features. Pattern Recognit. 26(12): 1757–1770

    Article  Google Scholar 

  16. Fujisawa H., Nakano Y. and Kurino K. (1992). Segmentation methods for character recognition: from segmentation to document structure analysis. Proc. IEEE 80(7): 1079–1092

    Article  Google Scholar 

  17. Gatos, B., Karras, D., Perantonis, S.: Optical character recognition using novel feature extraction and neural network classification techniques. Proc. IEEE, pp. 65–72 (1994)

  18. Gerard A. (1981). African Language Literatures: An Introduction to the Literary History of sub-Saharan Africa. Three Continents Press, Washington

    Google Scholar 

  19. Ha T. and Bunke H. (1997). Image Processing Methods for Document image Analysis, Handbook of Character Recognition and Document Image Analysis. World Scientific, New Jersey

    Google Scholar 

  20. Hagedoorn, M.: Pattern matching using similarity measures. PhD Thesis, Utrecht University, Utrecht, Netherlands (2000)

  21. Ho T.K. (2002). Multiple classifier combination: lessons and next steps. In: Bunke, H. and Kandel, A. (eds) Hybrid Methods in Pattern Recognition, pp. World Scientific, Singapore

    Google Scholar 

  22. Jain A., Duin R. and Mao J. (2000). Statistical pattern recognition: a review. IEEE-TPAMI 22(1): 4–37

    Google Scholar 

  23. Khorsheed M.S. (2002). Off-line Arabic character recognition—a review. Pattern Anal. Appl. 5: 31–45

    Article  MathSciNet  Google Scholar 

  24. Mori S., Nishida H. and Yamada H. (1999). Optical Character Recognition. Wiley, New York

    Google Scholar 

  25. Mori S., Suen C. and Yamamoto K. (1992). Historical review of OCR research and development. Proc. IEEE 80(7): 1029–1058

    Article  Google Scholar 

  26. Navarro G. (2001). A guided tour to approximate string matching. ACM Comput. Surv. 33(1): 31–88

    Article  Google Scholar 

  27. Premaratne, L., Assabie, Y., Bigun, J.: Recognition of modification-based scripts using direction tensors. ICVGIP’04, Kolkata, pp. 587–592 (2004)

  28. Sanfeliu A. (1990). Matching tree structures. In: Bunke, H. and Sanfeliu, A. (eds) Syntactic and Structural Pattern Recognition: Theory and Applications., pp. World Scientific, Singapore

    Google Scholar 

  29. Smith P. (2004). Applied Data Structures with C++. Jones & Bartlett, Sudbury

    Google Scholar 

  30. Singh, S., Amin, A.: Fuzzy recognition of Chinese characters. In: Proceedings of the Irish Machine Vision and Image Processing Conference (IMVIP’99), Dublin (1999)

  31. Srihari S.N., Hong T. and Srikantan G. (1997). Machine-printed Japanese document recognition. Pattern Recognit. 30(8): 1301–1313

    Article  Google Scholar 

  32. Suen, C.Y., Mori, S., Kim, S.H., Leung, C.H.: Analysis and recognition of Asian scripts—the state of the art. In: Proceedings of the 7th International Conference on Document Analysis and Recognition, vol. 2, Edinburgh, pp. 866–878 (2003)

  33. Trier O.D., Jain A.K. and Taxt T. (1996). Feature extraction methods for character recognition—a survey. Pattern Recognit. 29(4): 641–662

    Article  Google Scholar 

  34. Weickert J. (2003). Coherence-enhancing shock filters. In: Michaelis, B. and Krell, G. (eds) Lecture Notes in Computer Science, vol. 2781, pp 1–8. Springer, Berlin

    Google Scholar 

  35. Wu, X., Wu, M.: A recognition algorithm for chinese characters in diverse fonts. In: Proceedings of the 2002 International Conference on Image Processing (ICIP’02), vol. 3, New York, pp. 981–984 (2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaregal Assabie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Assabie, Y., Bigun, J. Multifont size-resilient recognition system for Ethiopic script. IJDAR 10, 85–100 (2007). https://doi.org/10.1007/s10032-007-0048-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10032-007-0048-y

Keywords

Navigation