Abstract
In this paper, we present a new approach for reconstructing low-resolution document images. Unlike other conventional reconstruction methods, the unknown pixel values are not estimated based on their local surrounding neighbourhood, but on the whole image. In particular, we exploit the multiple occurrence of characters in the scanned document. In order to take advantage of this repetitive behaviour, we divide the image into character segments and match similar character segments to filter relevant information before the reconstruction. A great advantage of our proposed approach over conventional approaches is that we have more information at our disposal, which leads to a better reconstruction of the high-resolution (HR) image. Experimental results confirm the effectiveness of our proposed method, which is expressed in a better optical character recognition (OCR) accuracy and visual superiority to other traditional interpolation and restoration methods.
Similar content being viewed by others
References
Allier B., Bali N., Emptoz H.: Automatic accurate broken character restoration for patrimonial documents. Int. J. Document Anal 8(4), 246–261 (2006)
Bern, M., Goldberg, D.: Scanner-model-based document image improvement. In: Proceedings of IEEE International Conference of Image Processing, pp. 582–585 (2000)
Buades A., Coll B., Morel J.: Image denoising by non-local averaging. Proc. IEEE Int. Conf. Acoust. Speech Signal Process. 2, 25–28 (2005)
Cannon M., Hochberg J., Kelly P.: Quality assessment and restoration of typewritten document images. Int. J. Document Anal. Recognit. 2(2–3), 80–89 (1999)
Capel, D.P., Zisserman, A.: Super-resolution enhancement of text image sequences. In: Proceedings of International Conference on Pattern Recognition, pp. 600–605 (2000)
Casey R.G., Lecolinet E.: A survey of methods and strategies in character segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 18(7), 690–706 (1996)
Chiandussi S., Ramponi G.: Nonlinear unsharp masking for the enhancement of document images. Proc. Eighth Eur. Signal Process. Conf. 1, 575–578 (1996)
Dalley, G., Freeman, W., Marks, J.: Single-frame text super-resolution: a Bayesian approach. In: Proceedings of IEEE International Conference of Image Processing, pp. 3295–3298 (2004)
Datsenko D., Elad M.: Example-based single image super-resolution: a global MAP approach with outlier rejection. J. Multidimensional Syst Signal Process 18(2–3), 103–121 (2007)
Dempster A.P., Lairde N.M., Rubin D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B (Methodological) 39(1), 1–38 (1977)
Donaldson K., Myers G.: Bayesian super-resolution of text in video with a text-specific bimodal prior. Int. J. Document Anal. Recognit. 7, 159–167 (2005)
Farsiu S., Robinson M.D., Elad M., Milanfar P.: Fast and robust multiframe super resolution. IEEE Trans. Image Process. 13, 1327–1344 (2004)
Forney G.D.: The viterbi algorithm. Proc. IEEE 61(3), 268–278 (1973)
Freeman W.T., Jones T.R., Pasztor E.C.: Example-based super-resolution. IEEE Comput. Graph. Appl. 22(2), 55–65 (2002)
Hobby, J., Ho, T.K.: Enhancing degraded document images via bitmap clustering and averaging. In: Proceedings of the 4th International Conference on Document Analysis and Recognition, pp. 394–400 (1997)
Kia O.E., Doermann D.S., Rosenfeld A., Chellappa R.: Symbolic compression and processing of document images. J. Comput. Vision Image Underst. 70(3), 335–349 (1998)
Lange K., Little R., Taylor J.: Robust statistical modeling using the t-distribution. J. Am. Stat. Assoc. 84(408), 881–896 (1989)
Ledda, A., Luong, H.Q., Philips, W., De Witte, V., Kerre, E.E.: Greyscale image interpolation using mathematical morphology. Lecture Notes in Computer Science, vol. 4179 (Advanced Concepts For Intelligent Vision Systems), pp. 78–90 (2006)
Lee S.W., Lee D.J., Park H.S.: A new methodology for gray-scale character segmentation and recognition. IEEE Trans. Pattern Anal. Mach. Intell. 18(10), 1045–1050 (1996)
Lehmann T., Gönner C., Spitzer K.: Survey: interpolations methods in medical image processing. IEEE Trans. Med. Imaging 18, 1049–1075 (1999)
Li H., Doermann D.: Text enhancement in digital video using multiple frame integration. Proc. ACM Multimed. 99, 19–22 (1999)
Li X., Orchard M.T.: New edge-directed interpolation. IEEE Trans. Image Process. 10, 1521–1527 (2001)
Liang J., Doermann D., Li H.: Camera-based analysis of text and documents: a survey. Int. J. Document Anal. Recognit. 7, 84–104 (2005)
Liu C., Rubin D.B., Wu Y.N.: Parameters expansion to accelerate EM: the PX-EM algorithm. Biometrika 85(4), 755–770 (1998)
Luong H.Q., De Smet P., Philips W.: Image interpolation using constrained adaptive contrast enhancement techniques. Proc. IEEE Int. Conf. Image Process. 2, 998–1001 (2005)
Luong, H.Q., Ledda, A., Philips, W.: Non-local interpolation. In: Proceedings of IEEE International Conference of Image Processing, pp. 693–696 (2006)
Mancas-Thillou, C., Mirmehdi, M.: An introduction to super-resolution text. Digital Document Processing: Major Directions and Recent Advances (Advances in Pattern Recognition), pp. 305–327. Springer, Berlin (2007)
Meijering E.H.W., Niessen W.J., Viergever M.A.: Quantitative evaluation of convolution-based methods for medical image interpolation. Med. Image Anal. 5, 111–126 (2001)
Morse, B.S., Schwartzwald, D.: Isophote-based interpolation. In: Proceedings of IEEE International Conference on Image Processing, pp. 227–231 (1998)
Muresan D.: Fast edge directed polynomial interpolation. Proc. IEEE Int. Conf. Image Process. 2, 990–993 (2005)
Navarro G.: A guided tour to approximate string matching. ACM Comput. Surv. 33(1), 31–88 (2001)
Pižurica, A., Vanhamel, I., Sahli, H., Philips, W., Katartzis, A.: A Bayesian approach to nonlinear diffusion based on a Laplacian prior for ideal image Gradient. In: Proceedings of IEEE Workshop On Statistical Signal Processing (2005)
Rice, S.V.: Measuring the accuracy of page-reading systems. Ph.D. dissertation, University of Nevada (1996)
Serra J.: Image Analysis and Mathematical Morphology, vol. 1. Academic Press, New York (1982)
Taylor M.J., Dance C.R.: Enhancement of document images from cameras. Proc. SPIE Document Recognit. 3305, 230–241 (1998)
Thouin P., Chang C.: A method for restoration of low-resolution document images. Int. J. Document Anal. Recognit. 2, 200–210 (2000)
Tonazzini A., Vezzosi S., Bedini L.: Analysis and recognition of highly degraded printed characters. Int. J. Document Anal. Recognit. 6, 236–247 (2004)
Ukkonen E.: On-Line construction of suffix trees. Algorithmica 14(3), 249–260 (1995)
Yang Y., Yan H.: An adaptive logical method for binarization of degraded document images. Pattern Recognit. 33, 787–807 (2000)
Yang Y., Yan H., Yu D.: Content-lossless document image compression. Based Struct. Anal. Pattern Matching Pattern Recognit. 33, 1277–1293 (2000)
Zheng Q., Kanungo T.: Morphological degradation models and their use in document image restoration. Proc. IEEE Int. Conf. Image Process. 1, 193–196 (2001)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Luong, H.Q., Philips, W. Robust reconstruction of low-resolution document images by exploiting repetitive character behaviour. IJDAR 11, 39–51 (2008). https://doi.org/10.1007/s10032-008-0068-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10032-008-0068-2