Skip to main content

Advertisement

Log in

Robust reconstruction of low-resolution document images by exploiting repetitive character behaviour

  • Original Paper
  • Published:
International Journal of Document Analysis and Recognition (IJDAR) Aims and scope Submit manuscript

Abstract

In this paper, we present a new approach for reconstructing low-resolution document images. Unlike other conventional reconstruction methods, the unknown pixel values are not estimated based on their local surrounding neighbourhood, but on the whole image. In particular, we exploit the multiple occurrence of characters in the scanned document. In order to take advantage of this repetitive behaviour, we divide the image into character segments and match similar character segments to filter relevant information before the reconstruction. A great advantage of our proposed approach over conventional approaches is that we have more information at our disposal, which leads to a better reconstruction of the high-resolution (HR) image. Experimental results confirm the effectiveness of our proposed method, which is expressed in a better optical character recognition (OCR) accuracy and visual superiority to other traditional interpolation and restoration methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allier B., Bali N., Emptoz H.: Automatic accurate broken character restoration for patrimonial documents. Int. J. Document Anal 8(4), 246–261 (2006)

    Article  Google Scholar 

  2. Bern, M., Goldberg, D.: Scanner-model-based document image improvement. In: Proceedings of IEEE International Conference of Image Processing, pp. 582–585 (2000)

  3. Buades A., Coll B., Morel J.: Image denoising by non-local averaging. Proc. IEEE Int. Conf. Acoust. Speech Signal Process. 2, 25–28 (2005)

    Article  Google Scholar 

  4. Cannon M., Hochberg J., Kelly P.: Quality assessment and restoration of typewritten document images. Int. J. Document Anal. Recognit. 2(2–3), 80–89 (1999)

    Article  Google Scholar 

  5. Capel, D.P., Zisserman, A.: Super-resolution enhancement of text image sequences. In: Proceedings of International Conference on Pattern Recognition, pp. 600–605 (2000)

  6. Casey R.G., Lecolinet E.: A survey of methods and strategies in character segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 18(7), 690–706 (1996)

    Article  Google Scholar 

  7. Chiandussi S., Ramponi G.: Nonlinear unsharp masking for the enhancement of document images. Proc. Eighth Eur. Signal Process. Conf. 1, 575–578 (1996)

    Google Scholar 

  8. Dalley, G., Freeman, W., Marks, J.: Single-frame text super-resolution: a Bayesian approach. In: Proceedings of IEEE International Conference of Image Processing, pp. 3295–3298 (2004)

  9. Datsenko D., Elad M.: Example-based single image super-resolution: a global MAP approach with outlier rejection. J. Multidimensional Syst Signal Process 18(2–3), 103–121 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dempster A.P., Lairde N.M., Rubin D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B (Methodological) 39(1), 1–38 (1977)

    MATH  Google Scholar 

  11. Donaldson K., Myers G.: Bayesian super-resolution of text in video with a text-specific bimodal prior. Int. J. Document Anal. Recognit. 7, 159–167 (2005)

    Article  Google Scholar 

  12. Farsiu S., Robinson M.D., Elad M., Milanfar P.: Fast and robust multiframe super resolution. IEEE Trans. Image Process. 13, 1327–1344 (2004)

    Article  Google Scholar 

  13. Forney G.D.: The viterbi algorithm. Proc. IEEE 61(3), 268–278 (1973)

    Article  MathSciNet  Google Scholar 

  14. Freeman W.T., Jones T.R., Pasztor E.C.: Example-based super-resolution. IEEE Comput. Graph. Appl. 22(2), 55–65 (2002)

    Article  Google Scholar 

  15. Hobby, J., Ho, T.K.: Enhancing degraded document images via bitmap clustering and averaging. In: Proceedings of the 4th International Conference on Document Analysis and Recognition, pp. 394–400 (1997)

  16. Kia O.E., Doermann D.S., Rosenfeld A., Chellappa R.: Symbolic compression and processing of document images. J. Comput. Vision Image Underst. 70(3), 335–349 (1998)

    Article  Google Scholar 

  17. Lange K., Little R., Taylor J.: Robust statistical modeling using the t-distribution. J. Am. Stat. Assoc. 84(408), 881–896 (1989)

    Article  MathSciNet  Google Scholar 

  18. Ledda, A., Luong, H.Q., Philips, W., De Witte, V., Kerre, E.E.: Greyscale image interpolation using mathematical morphology. Lecture Notes in Computer Science, vol. 4179 (Advanced Concepts For Intelligent Vision Systems), pp. 78–90 (2006)

  19. Lee S.W., Lee D.J., Park H.S.: A new methodology for gray-scale character segmentation and recognition. IEEE Trans. Pattern Anal. Mach. Intell. 18(10), 1045–1050 (1996)

    Article  Google Scholar 

  20. Lehmann T., Gönner C., Spitzer K.: Survey: interpolations methods in medical image processing. IEEE Trans. Med. Imaging 18, 1049–1075 (1999)

    Article  Google Scholar 

  21. Li H., Doermann D.: Text enhancement in digital video using multiple frame integration. Proc. ACM Multimed. 99, 19–22 (1999)

    Google Scholar 

  22. Li X., Orchard M.T.: New edge-directed interpolation. IEEE Trans. Image Process. 10, 1521–1527 (2001)

    Article  Google Scholar 

  23. Liang J., Doermann D., Li H.: Camera-based analysis of text and documents: a survey. Int. J. Document Anal. Recognit. 7, 84–104 (2005)

    Article  Google Scholar 

  24. Liu C., Rubin D.B., Wu Y.N.: Parameters expansion to accelerate EM: the PX-EM algorithm. Biometrika 85(4), 755–770 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  25. Luong H.Q., De Smet P., Philips W.: Image interpolation using constrained adaptive contrast enhancement techniques. Proc. IEEE Int. Conf. Image Process. 2, 998–1001 (2005)

    Google Scholar 

  26. Luong, H.Q., Ledda, A., Philips, W.: Non-local interpolation. In: Proceedings of IEEE International Conference of Image Processing, pp. 693–696 (2006)

  27. Mancas-Thillou, C., Mirmehdi, M.: An introduction to super-resolution text. Digital Document Processing: Major Directions and Recent Advances (Advances in Pattern Recognition), pp. 305–327. Springer, Berlin (2007)

  28. Meijering E.H.W., Niessen W.J., Viergever M.A.: Quantitative evaluation of convolution-based methods for medical image interpolation. Med. Image Anal. 5, 111–126 (2001)

    Article  Google Scholar 

  29. Morse, B.S., Schwartzwald, D.: Isophote-based interpolation. In: Proceedings of IEEE International Conference on Image Processing, pp. 227–231 (1998)

  30. Muresan D.: Fast edge directed polynomial interpolation. Proc. IEEE Int. Conf. Image Process. 2, 990–993 (2005)

    Google Scholar 

  31. Navarro G.: A guided tour to approximate string matching. ACM Comput. Surv. 33(1), 31–88 (2001)

    Article  Google Scholar 

  32. Pižurica, A., Vanhamel, I., Sahli, H., Philips, W., Katartzis, A.: A Bayesian approach to nonlinear diffusion based on a Laplacian prior for ideal image Gradient. In: Proceedings of IEEE Workshop On Statistical Signal Processing (2005)

  33. Rice, S.V.: Measuring the accuracy of page-reading systems. Ph.D. dissertation, University of Nevada (1996)

  34. Serra J.: Image Analysis and Mathematical Morphology, vol. 1. Academic Press, New York (1982)

    Google Scholar 

  35. Taylor M.J., Dance C.R.: Enhancement of document images from cameras. Proc. SPIE Document Recognit. 3305, 230–241 (1998)

    Article  Google Scholar 

  36. Thouin P., Chang C.: A method for restoration of low-resolution document images. Int. J. Document Anal. Recognit. 2, 200–210 (2000)

    Article  Google Scholar 

  37. Tonazzini A., Vezzosi S., Bedini L.: Analysis and recognition of highly degraded printed characters. Int. J. Document Anal. Recognit. 6, 236–247 (2004)

    Article  Google Scholar 

  38. Ukkonen E.: On-Line construction of suffix trees. Algorithmica 14(3), 249–260 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  39. Yang Y., Yan H.: An adaptive logical method for binarization of degraded document images. Pattern Recognit. 33, 787–807 (2000)

    Article  Google Scholar 

  40. Yang Y., Yan H., Yu D.: Content-lossless document image compression. Based Struct. Anal. Pattern Matching Pattern Recognit. 33, 1277–1293 (2000)

    Google Scholar 

  41. Zheng Q., Kanungo T.: Morphological degradation models and their use in document image restoration. Proc. IEEE Int. Conf. Image Process. 1, 193–196 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiêp Q. Luong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luong, H.Q., Philips, W. Robust reconstruction of low-resolution document images by exploiting repetitive character behaviour. IJDAR 11, 39–51 (2008). https://doi.org/10.1007/s10032-008-0068-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10032-008-0068-2

Keywords