Skip to main content
Log in

Consensus-based clustering for document image segmentation

  • Original Paper
  • Published:
International Journal on Document Analysis and Recognition (IJDAR) Aims and scope Submit manuscript

Abstract

Segmentation of a document image plays an important role in automatic document processing. In this paper, we propose a consensus-based clustering approach for document image segmentation. In this method, the foreground regions of a document image are grouped into a set of primitive blocks, and a set of features is extracted from them. Similarities among the blocks are computed on each feature using a hypothesis test-based similarity measure. Based on the consensus of these similarities, clustering is performed on the primitive blocks. This clustering approach is used iteratively with a classifier to label each primitive block. Experimental results show the effectiveness of the proposed method. It is further shown in the experimental results that the dependency of classification performance on the training data is significantly reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. http://www.facweb.iitkgp.ernet.in/~jay/anveshak_gt/anveshak_gt.html.

References

  1. Abd Almageed, W., Agrawal, M., Seo, W., Doermann, D.: Document zone classification using partial least squares and hybrid classifiers. In: 19th International Conference on Pattern Recognition, 2008. ICPR 2008, pp. 1–4 (2008)

  2. Ahmed, S., Shafait, F., Liwicki, M., Dengel, A.: A generic method for stamp segmentation using part-based features. In: 12th International Conference on Document Analysis and Recognition, ICDAR ’13, pp. 708–712. IEEE Computer Society (2013)

  3. Bloomberg, D.S.: Multiresolution morphological analysis of document images. SPIE Visual Commun. Image Process. 1818, 648–662 (1992)

    Google Scholar 

  4. Bouguelia, M. R., Belaid, Y., Belaid, A.: Document image and zone classification through incremental learning. In: 20th IEEE International Conference on Image Processing, ICIP ’13, pp. 4230–4234 (2013)

  5. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Breuel, T. M.: Two geometric algorithms for layout analysis. In: 5th International Workshop on Document Analysis Systems V, DAS ’02, pp. 188–199. Springer, London, UK (2002)

  7. Chang, C.C., Lin, C.J.: Libsvm: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3), 27:1–27:27 (2011)

    Article  Google Scholar 

  8. Chen, N., Blostein, D.: A survey of document image classification: problem statement, classifier architecture and performance evaluation. Int. J. Doc. Anal. Recognit. (IJDAR) 10(1), 1–16 (2007)

    Article  Google Scholar 

  9. Cohen, R., Asi, A., Kedem, K., El-Sana, J., Dinstein, I.: Robust text and drawing segmentation algorithm for historical documents. In: 2nd International Workshop on Historical Document Imaging and Processing, HIP ’13, pp. 110–117. ACM, New York, NY, USA (2013)

  10. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  11. Dey, S., Mukherjee, J., Sural, S.: Stamp and logo detection from document images by finding outliers. In: Fifth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics, NCVPRIPG ’15, pp. 1–4 (2015)

  12. Dey, S., Mukherjee, J., Sural, S., Bhowmick, P.: Colored rubber stamp removal from document images. PReMI ’13, pp. 545–550. Springer, Berlin (2013)

  13. Kise, K., Sato, A., Iwata, M.: Segmentation of page images using the area voronoi diagram. Comput. Vis. Image Underst. 70(3), 370–382 (1998)

    Article  Google Scholar 

  14. Dey, S., Mukhopadhyay, J., Sural, S., Bhowmick, P.: Margin noise removal from printed document images. DAR ’12, pp. 86–93. ACM, New York, NY, USA (2012)

  15. Douglas, D.H., Peucker, T.M.: Algorithm for the reduction of the number of points required to represent a digitized line or its caricature. Cartogr. Int. J. Geogr. Inf. Geovis. 10(2), 112–122 (1973)

    Google Scholar 

  16. Dueck, D.: Affinity propagation: clustering data by passing messages. PhD Thesis Graduate Department of Electrical and Computer Engineering University of Toronto (2009)

  17. Epshtein, B., Ofek, E., Wexler, Y.: Detecting text in natural scenes with stroke width transform. In: International Conference on Computer Vision and Pattern Recognition, CVPR’10, pp. 2963–2970 (2010)

  18. Ester, M., Kriegel, H. P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of 2nd International Conference on Knowledge Discovery, pp. 226–231 (1996)

  19. Fletcher, L.A., Kasturi, R.: A robust algorithm for text string separation from mixed text/graphics images. IEEE Trans. Pattern Anal. Mach. Intell. 10(6), 910–918 (1988)

    Article  Google Scholar 

  20. Forczmański, P., Markiewicz, A.: Stamps detection and classification using simple features ensemble. Math. Probl. Eng., page Article ID 367879 (2014)

  21. Garg, R., Hassan, E., Chaudhury, S., Gopal, M.: A CRF based scheme for overlapping multi-colored text graphics separation. In: 11th International Conference on Document Analysis and Recognition, ICDAR ’11, vol. 2015, pp. 1–15. IEEE Computer Society (2011)

  22. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Prentice-Hall Inc, Upper Saddle River (2009)

    Google Scholar 

  23. Grana, C., Borghesani, D., Cucchiara, R.: Automatic segmentation of digitalized historical manuscripts. Multimed. Tools Appl. 55(3), 483–506 (2011)

    Article  Google Scholar 

  24. Guo, J. K., Ma, M. Y.: Separating handwritten material from machine printed text using hidden Markov models. In: 6th International Conference on Document Analysis and Recognition, ICDAR ’01, pp. 439 –443. IEEE Computer Society (2001)

  25. Haji, M., Sahoo, K. A., Bui, T. D., Suen, C. Y., Ponson, D.: Statistical hypothesis testing for handwritten word segmentation algorithms. In: International Conference on Frontiers in Handwriting Recognition, ICFHR’12, pp. 114–119 (2012)

  26. Hearn, D., Baker, M.P.: Computer Graphics, C Version, 2nd edn. Pearson Education, Upper Saddle River (2007)

    MATH  Google Scholar 

  27. Hines, W.W., Montgomery, D.C., Goldsman, D.M., Borror, C.M.: Probability and Statistics in Engineering, 4th edn. Wiley India, New Delhi (2012)

    Google Scholar 

  28. Hu, W., Xie, N., Hu, R., Ling, H., Chen, Q., Yan, S., Maybank, S.: Bin ratio-based histogram distances and their application to image classification. IEEE Trans. Pattern Anal. Mach. Intell. 36(12), 2338–2352 (2014)

    Article  Google Scholar 

  29. Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2(1), 193–218 (1985)

    Article  MATH  Google Scholar 

  30. Kise, K.: Page segmentation techniques in document analysis. In: Doermann, D., Tombre, K. (eds.) Handbook of Document Image Processing and Recognition, pp. 135–175. Springer, London (2014)

    Chapter  Google Scholar 

  31. Krishnamoorthy, M., Nagy, G., Seth, S., Viswanathan, M.: Syntactic segmentation and labeling of digitized pages from technical journals. IEEE Trans. Pattern Anal. Mach. Intell. 15(7), 737–747 (1993)

    Article  Google Scholar 

  32. Kumar, S., Gupta, R., Chaudhury, S., Khanna, N., Joshi, S.D.: Text extraction and document image segmentation using matched wavelets and MRF model. IEEE Trans. Image Process. 16(8), 2117–2128 (2007)

    Article  MathSciNet  Google Scholar 

  33. Manning, C.D., Raghavanand, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press, New York (2008)

    Book  MATH  Google Scholar 

  34. Meunier, J. L.: Optimized xy-cut for determining a page reading order. In: 8th International Conference on Document Analysis and Recognition, ICDAR ’05, vol. 1, pp. 347–351 (2005)

  35. Micenkova, B., Beusekom, J. V.: Stamp detection in color document images. In: 11th International Conference on Document Analysis and Recognition, ICDAR ’11, pp. 1125–1129. IEEE Computer Society (2011)

  36. Murphy, K.P.: Machine Learning: A Probabilistic Perspective. The MIT Press, Cambridge (2012)

    MATH  Google Scholar 

  37. Nagy, G.: Twenty years of document image analysis in PAMI. IEEE Trans. Pattern Anal. Mach. Intell. 22(1), 38–62 (2000)

    Article  Google Scholar 

  38. Nagy, G., Seth, S.: Hierarchical representation of optically scanned documents. In: 7th International conference on Pattern Recognition, ICPR ’84, pp. 347–349 (1984)

  39. Nandedkar, A., Mukherjee, J., Sural, S.: Text-graphics separation to detect logo and stamp from color document images: A spectral approach. In: 13th International Conference on Document Analysis and Recognition, ICDAR ’15, pp. 571–575 (2015)

  40. Nikolaou, N., Makridis, M., Gatos, B., Stamatopoulos, N., Papamarkos, N.: Segmentation of historical machine-printed documents using adaptive run length smoothing and skeleton segmentation paths. Image Vis. Comput. 28(4), 590–604 (2010)

    Article  Google Scholar 

  41. O’Gorman, L.: The document spectrum for page layout analysis. IEEE Trans. Pattern Anal. Mach. Intell. 15(11), 1162–1173 (1993)

    Article  Google Scholar 

  42. Papadopoulos, C., Pletschacher, S., Antonacopoulos, A., Clausner, C.: ICDAR2015 competition on recognition of documents with complex layouts—RDCL2015. In: 13th International Conference on Document Analysis and Recognition, ICDAR ’15, pp. 1151–1155. IEEE Computer Society (2015)

  43. Pavlidis, T., Zhou, J.: Page segmentation and classification. CVGIP. Graph. Models Image Process. 54(6), 484–496 (1992)

    Article  Google Scholar 

  44. Peng, X., Setlur, S., Govindaraju, V., Sitaram, R., Bhuvanagiri, K.: Markov random field based text identification from annotated machine printed documents. In: 10th International Conference on Document Analysis and Recognition, ICDAR ’09, pp. 431–435. IEEE Computer Society (2009)

  45. Rosenberg, A., Hirschberg, J.: V-measure: A conditional entropy-based external cluster evaluation measure. In: Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL), pp. 410–420 (2007)

  46. Sokolova, M., Lapalme, G.: A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 45(4), 427–437 (2009)

  47. Sutheebanjard, P., Premchaiswadi, W.: A modified recursive x-y cut algorithm for solving block ordering problems. In: 2nd International Conference on Computer Engineering and Technology, ICCET ’10, pp. V3–307–V3–311 (2010)

  48. Suzuki, S., Abe, K.: Topological structural analysis of digitized binary images by border following. Comput. Vis. Graph. Image Process. 30(1), 32–46 (1985)

    Article  MATH  Google Scholar 

  49. The Wilcoxon matched-pairs signed-ranks test. http://www.fon.hum.uva.nl/Service/Statistics/Signed_Rank_Test.html. Accessed 15 Aug 2015

  50. Vinh, N. X., Epps, J., Bailey, J.: Information theoretic measures for clusterings comparison: Is a correction for chance necessary?. In: Proceedings of the 26th Annual International Conference on Machine Learning, ICML ’09, pp. 1073–1080. ACM, New York, NY, USA (2009)

  51. Wahl, F.M., Wong, K.Y., Casey, R.G.: Block segmentation and text extraction in mixed text/image documents. Comput. Graph. Image Process. 20(4), 375–390 (1982)

    Article  Google Scholar 

  52. Wang, Y., Phillips, I.T., Haralick, R.M.: Document zone content classification and its performance evaluation. Pattern Recognit. 39(1), 57–73 (2006)

    Article  Google Scholar 

  53. Zheng, Y., Li, H., Doermann, D.: Machine printed text and handwriting identification in noisy document images. IEEE Trans. Pattern Anal. Mach. Intell. 26(3), 337–353 (2004)

    Article  Google Scholar 

  54. Zhu, G., Doermann, D.: Automatic document logo detection. In: 9th International Conference on Document Analysis and Recognition, ICDAR ’07, pp. 864–868. IEEE Computer Society (2007)

  55. Zhu, G., Jaeger, S., Doermann, D.: A robust stamp detection framework on degraded documents. In: SPIE Conference on Document Recognition and Retrieval, DRR ’06, pp. 1–9 (2006)

Download references

Acknowledgments

This work is partially funded by TCS research scholar program and partially by Ministry of Communications and Information Technology, Government of India, Ref.: MCIT 11(19)/ 2010–HCC (TDIL) dt. 28-12-2010. We are thankful to our colleagues and laboratory members for preparing the ground truth data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumyadeep Dey.

Appendices

Appendix

Extension of the consensus-based clustering approach for multiple number of features

The proposed segmentation method is developed on the feature set \(\mathbf {Z}=\{\mathcal {C},\mathcal {S}\}\). However, this method can be extended for n number of features, with some modifications in the consensus-based clustering approach. Equation (4) can be replaced with Eq. (7), where \(w_{z}\) is the weight associated with the feature \(z \in \mathbf {Z}\).

$$\begin{aligned} sim_{ij} = \frac{\sum _{z\in \mathbf {Z}}{w_{z}S_{ij}^{z}}}{\sum _{z\in \mathbf {Z}}{w_{z}}} \end{aligned}$$
(7)

\(sim_{ij}\) in Line 5 of Algorithm 2 is computed using Eq. (7). In Algorithm 4, Lines \(1-4\) can be replaced with a for loop iterating for each \(z \in \mathbf {Z}\) to compute the graph \(G_{z}(V_z,E_z)\) using the set of weights W. In each iteration, W contains weights \(w_z=1\) and \(\forall z' \in \{\mathbf {Z}{\setminus }\{z\}\}\), \(w_{z'}=0\). Similar modification is required in Algorithm 3 for Lines 2–7. In this for loop, set of connected nodes \(\mathscr {N}_{z}\) for each \(G_{z}\) is also computed. Collection of all such \(\mathscr {N}_{z}\) is stored in \(\mathbf {N}\). The for loop of Lines 8–15 in this algorithm is replaced with the function call FindClusters(\(K_{CCCN},A,\mathbf {N},z,t\)), where z and t are initialized with 1. The function FindClusters is given in Algorithm 7.

figure g

This algorithm takes \(K,D,\mathbf {N},z,\) and t as inputs. K is the set of clusters which is initialized as an empty set and gets updated in each recursive call of this function. \(\mathbf {N}\) is the collection of sets of connected nodes \(\mathscr {N}_{z}\) obtained from the graph \(G_z(V_z,E_z)\) for each \(z \in \mathbf {Z}\). The set D is generated by taking a single element from each \(\mathscr {N}_{z}\) at a time. Therefore, |D| = \(|\mathbf {N}|\). The variables z and t denote indices for elements of \(\mathbf {N}\) and D, respectively. In this algorithm, Lines 1–7 populate D recursively with \(|\mathbf {N}| - 1\) elements, with only one element from each \(\mathscr {N}_{z}\). Recursive call of this function is made in Line 5. This recursive call ensures filling \(\mid \mathbf {N} \mid - 1\) positions of D with \(\prod _{z=1}^{\mid \mathbf {N} \mid - 1}\) number of combinations. Lines 8–16 represent the base condition of the recursive function. The for loop of Lines 9–15 fills the last position of D by selecting one by one element from the last member of \(\mathbf {N}\) and computes intersection among the elements of D. If the intersection results in a non-empty set, then the set of clusters K is updated with the non-empty set (Lines 12–14).

Clustering metrics

For evaluating a clustering algorithm, adjusted rand index (ARI) was used in [29]. It is computed according to Eq. (8). For computing ARI, let the ground truth classes be represented as, \(C=\{c_1, c_2, \ldots , c_{|C|}\}\). Computed clusters are represented as, \(K=\{k_1, k_2, \ldots ,k_{|K|}\}\). However, the ground truth classes and the computed clusters are represented in such a way that \(\sum _{i=1}^{|C|} |c_i|\) \(=\) \(\sum _{j=1}^{|K|} |k_j|\). Let the total number of blocks present in an input document image that needs to be clustered, be n, where n \(=\) \( \sum _{i=1}^{|C|} |c_i|\). There are \(n \atopwithdelims ()2\) number of possible combinations for n number of blocks. These \(n \atopwithdelims ()2\) combinations can be subdivided into four classes: true positive (tp), false positive (fp), true negative (tn), and false negative (fn), such that \(n \atopwithdelims ()2\) \(=\) \(tp + fp + tn + fn\). A pair is considered to be in tp, if both blocks in the pair are present in the same class in C and in the same cluster in K. If the blocks in the pair are present in different classes in C and in the same cluster in K, then the pair is said to be fp. If blocks in the pair are present both in different classes in C and in different clusters in K, then the pair is considered to be tn. A pair belongs to fn, if they are in different clusters in K, but in the same class in C.

$$\begin{aligned}&\mathrm{ARI} = \frac{\mathrm{Index} - \mathrm{ExpectedIndex}}{\mathrm{MaximumIndex} - \mathrm{ExpectedIndex}} \end{aligned}$$
(8)
$$\begin{aligned}&\text {where,} \quad \mathrm{Index} = \sum _{i = 1}^{|C|} \sum _{j = 1}^{|K|} {|x_{ij}| \atopwithdelims ()2}, \nonumber \\&x_{ij} = c_i \cap k_j, \quad c_i \in C, \quad \text {and} \quad k_j \in K \end{aligned}$$
(9)
$$\begin{aligned}&\mathrm{ExpectedIndex} = \frac{(tp + fp) \times (tp + fn) }{tp + fp + tn + fn} \end{aligned}$$
(10)
$$\begin{aligned}&\mathrm{MaximumIndex} = \frac{(tp + fp) + (tp + fn)}{2} \end{aligned}$$
(11)

To evaluate a clustering algorithm, an entropy-based technique is proposed in [45], known as V-measure (V). V-measure is the harmonic mean of homogeneity (\(\varsigma \)) and completeness (\(\varphi \)) (defined later). It is given in Eq. (12), where \(\beta \) is positive.

$$\begin{aligned} V_{\beta } = \frac{(1 + \beta ) \times \varsigma \times \varphi }{(\beta \times \varsigma ) + \varphi } \end{aligned}$$
(12)

To achieve high \(\varsigma \) measure, a clustering algorithm needs to cluster datapoints from the same class to the same cluster. It is computed using Eq. (13). To achieve high \(\varphi \) measure, the clustering algorithm must cluster all datapoints from the same class to the same cluster. \(\varphi \) measure is expressed using Eq. (14). In these expressions, H(C|K) and H(K|C) quantify relative entropy between two variables, and H(C) and H(K) represent entropy of a variable. Relative entropy between two variables C and K is expressed in Eq. (15), and entropy of a variable C is defined in Eq. (16).

$$\begin{aligned}&\varsigma = \left\{ \begin{array}{l l} 1 &{} \quad \text {if }H(C,K) = 0\\ 1 - \frac{H(C|K)}{H(C)} &{} \quad \text {otherwise}\\ \end{array} \right. \end{aligned}$$
(13)
$$\begin{aligned}&\varphi = \left\{ \begin{array}{l l} 1 &{} \quad \text {if }H(K,C) = 0\\ 1 - \frac{H(K|C)}{H(K)} &{} \quad \text {otherwise}\\ \end{array} \right. \end{aligned}$$
(14)
$$\begin{aligned}&H(C|K) = - \sum _{i = 1}^{|K|}{\sum _{j = 1}^{|C|}{\frac{|x_{ij}|}{n}}\mathrm{log}\left( \frac{|x_{ij}|}{\sum _{i=1}^{|C|}{|x_{ij}|}}\right) }\end{aligned}$$
(15)
$$\begin{aligned}&H(C) = - \sum _{i = 1}^{|C|}{\frac{\sum _{j = 1}^{|K|}{|x_{ij}|}}{n}\mathrm{log}\left( \frac{\sum _{j = 1}^{|K|}{|x_{ij}|}}{n}\right) } \end{aligned}$$
(16)

Adjusted mutual information (AMI) has been proposed in [50] and is defined using Eq. 17.

$$\begin{aligned}&\mathrm{AMI} = \frac{\mathrm{MI}(C,K) - E(\mathrm{MI}(C,K))}{\mathrm{max}(H(C),H(K)) - E(\mathrm{MI}(C,K))} \end{aligned}$$
(17)
$$\begin{aligned}&\mathrm{MI}(C,K) = \sum _{i = 1}^{|C|}\sum _{j = 1}^{|K|} \frac{|x_{ij}|}{n}log \left( \frac{\frac{|x_{ij}|}{n}}{\sum _{l = 1}^{|K|}\frac{|x_{il}|}{n}\sum _{l = 1}^{|C|}\frac{|x_{lj}|}{n}}\right) \end{aligned}$$
(18)
$$\begin{aligned}&E(\mathrm{MI}(C,K) = \sum _{i = 1}^{|C|}\sum _{j = 1}^{|K|}\sum _{|x_{ij}|}\frac{|x_{ij}|}{n} log\left( \frac{n|x_{ij}|}{|c_i||k_j|}\right) P \nonumber \\&\quad \text {where,} \quad P = \frac{{n \atopwithdelims ()|x_{ij}|}{n-|x_{ij}| \atopwithdelims ()|c_i|-|x_{ij}|}{n-|c_i| \atopwithdelims ()|k_j|-|x_{ij}|}}{{n \atopwithdelims ()|c_i|}{n \atopwithdelims ()|k_j|}} \end{aligned}$$
(19)

Multi-class classification metrics

For evaluation of multi-class classification, four metrics have been used, namely average accuracy (\(\mathrm{Avg}_{\mathrm{Acc}}\) Eq. 20), error rate (\(\mathrm{Err}_{\mathrm{Rate}}\) Eq. 21), \(\mathrm{FScore}_{\mu }\) (Eq. 22), and \(\mathrm{FScore}_{M}\) (Eq. 23). All these equations are adopted from [46].

$$\begin{aligned}&\mathrm{Avg}_{\mathrm{Acc}} = \frac{\sum _{i=1}^{\mid \mathfrak {I}\mid }{\frac{tp_i+tn_i}{tp_i+fp_i+tn_i+fn_i}}}{\mid \mathfrak {I}\mid } \end{aligned}$$
(20)
$$\begin{aligned}&\mathrm{Err}_{\mathrm{Rate}} = \frac{\sum _{i=1}^{\mid \mathfrak {I}\mid }{\frac{fp_i+fn_i}{tp_i+fp_i+tn_i+fn_i}}}{\mid \mathfrak {I}\mid }\nonumber \\&\mathrm{FScore}_{\mu } = \frac{(\beta ^{2}+1)\mathrm{Precision}_{\mu }\mathrm{Recall}_{\mu }}{\beta ^{2}\mathrm{Precision}_{\mu }+\mathrm{Recall}_{\mu }} \nonumber \\&\text {where,} \quad \mathrm{Precision}_{\mu } = \frac{\sum _{i=1}^{\mid \mathfrak {I}\mid }{tp_i}}{\sum _{i=1}^{\mid \mathfrak {I}\mid }{tp_i+fp_i}} \end{aligned}$$
(21)
$$\begin{aligned}&\text {and} \quad \mathrm{Recall}_{\mu } = \frac{\sum _{i=1}^{\mid \mathfrak {I}\mid }{tp_i}}{\sum _{i=1}^{\mid \mathfrak {I}\mid }{tp_i+fn_i}} \nonumber \\&\mathrm{FScore}_{M} = \frac{(\beta ^{2}+1) \mathrm{Precision}_{M}\mathrm{Recall}_{M}}{\beta ^{2}\mathrm{Precision}_{M}+\,\mathrm{Recall}_{M}} \nonumber \\&\text {where,} \quad \mathrm{Precision}_{M} = \frac{\sum _{i=1}^{\mid \mathfrak {I}\mid }{\frac{tp_i}{tp_i+fp_i}}}{\mid \mathfrak {I}\mid } \end{aligned}$$
(22)
$$\begin{aligned}&\text {and} \quad \mathrm{Recall}_{M} = \frac{\sum _{i=1}^{\mid \mathfrak {I}\mid }{\frac{tp_i}{tp_i+fn_i}}}{\mid \mathfrak {I}\mid } \end{aligned}$$
(23)

In Eqs. (2023), \(|\mathfrak {I}|\) represents the total number of classes, and \(tp_i\), \(fp_i\), \(tn_i\), and \(fn_i\), respectively, represent, true-positive rate, false-positive rate, true-negative rate, and false-negative rate for the \(i{\mathrm{th}}\) class. \(\mu \) and M represent micro- and macro- averaging. During evaluation, micro-averaging gives preference to bigger classes, whereas macro-averaging treats all classes equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, S., Mukherjee, J. & Sural, S. Consensus-based clustering for document image segmentation. IJDAR 19, 351–368 (2016). https://doi.org/10.1007/s10032-016-0275-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10032-016-0275-1

Keywords

Navigation