Skip to main content

Advertisement

Log in

Text and non-text separation in offline document images: a survey

  • Original Paper
  • Published:
International Journal on Document Analysis and Recognition (IJDAR) Aims and scope Submit manuscript

Abstract

Separation of text and non-text is an essential processing step for any document analysis system. Therefore, it is important to have a clear understanding of the state-of-the-art of text/non-text separation in order to facilitate the development of efficient document processing systems. This paper first summarizes the technical challenges of performing text/non-text separation. It then categorizes offline document images into different classes according to the nature of the challenges one faces, in an attempt to provide insight into various techniques presented in the literature. The pros and cons of various techniques are explained wherever possible. Along with the evaluation protocols, benchmark databases, this paper also presents a performance comparison of different methods. Finally, this article highlights the future research challenges and directions in this domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Please note that in the literature, the terms region and zone are often used interchangeably, with the term zone being preferred when a region is rectangular. For simplicity however, we will use the term region to mean either zone or polygonal region in this document.

References

  1. Lucas, S.M., et al.: ICDAR 2003 robust reading competitions: entries, results, and future directions. Int. J. Doc. Anal. Recognit. 7(2–3), 105–122 (2005)

    Article  Google Scholar 

  2. Shahab, A., Shafait, F., Dengel, A.: ICDAR 2011 robust reading competition challenge 2: reading text in scene images. In: 2011 International conference on document analysis and recognition (ICDAR), pp. 1491–1496 (2011)

  3. Yin, X.C., Zuo, Z.Y., Tian, S., Liu, C.L.: Text detection, tracking and recognition in video: a comprehensive survey. IEEE Trans. Image Process. 25(6), 2752–2773 (2016)

    Article  MathSciNet  Google Scholar 

  4. Tran, T.-A., Na, I.-S., Kim, S.-H.: Separation of text and non-text in document layout analysis using a recursive filter. KSII Trans. Internet Inf. Syst. 9(10), 4072–4091 (2015)

    Google Scholar 

  5. Yu, C., Song, Y., Zhang, Y.: Scene text localization using edge analysis and feature pool. Neurocomputing 175, 652–661 (2016)

    Article  Google Scholar 

  6. Asif, M.D.A., Tariq, U.U., Baig, M.N., Ahmad, W.: A novel hybrid method for text detection and extraction from news videos. Middle East J. Sci. Res. 19(5), 716–722 (2014)

    Google Scholar 

  7. Sarkar, R., Moulik, S., Das, N., Basu, S., Nasipuri, M., Kundu, M.: Suppression of non-text components in handwritten document images. In: 2011 International Conference on Image Information Processing (ICIIP)

  8. Wahl, F.M., Wong, K.Y., Casey, R.G.: Block segmentation and text extraction in mixed text/image documents. Comput. Graph. Image Process. 20(4), 375–390 (1982)

    Article  Google Scholar 

  9. Bunke, H.: Automatic interpretation of lines and text in circuit diagrams. In: Kittler, J., Fu, K.S., Pau, L.F. (eds.) Pattern Recognition Theory and Applications, pp. 297–310. Springer, Berlin (1982)

    Chapter  Google Scholar 

  10. Fletcher, L.A., Kasturi, R.: A robust algorithm for text string separation from mixed text/graphics images. IEEE Trans. Pattern Anal. Mach. Intell. 10(6), 910–918 (1988)

    Article  Google Scholar 

  11. Kamel, M., Zhao, A.: Extraction of binary character/graphics images from grayscale document images. CVGIP Graph. Models Image Process. 55(3), 203–217 (1993)

    Article  Google Scholar 

  12. Wendling, L., Tabbone, S.: A new way to detect arrows in line drawings. IEEE Trans. Pattern Anal. Mach. Intell. 26, 935–941 (2004)

    Article  Google Scholar 

  13. Bukhari, S.S., Azawi, A., Ali, M.I., Shafait, F., Breuel, T.M.: Document image segmentation using discriminative learning over connected components. In: Proceedings of the 9th IAPR International Workshop on Document Analysis Systems, pp. 183–190 (2010)

  14. Okun, O., Drmann, D., Pietikainen, M.: Page segmentation and zone classification: the state of the art, DTIC document (1999)

  15. Chiang, Y.-Y., Leyk, S., Knoblock, C.A.: A survey of digital map processing techniques. ACM Comput. Surv. 47(1), 1 (2014)

    Article  Google Scholar 

  16. Dori, D., Wenyin, L.: Automated CAD conversion with the machine drawing understanding system: concepts, algorithms, and performance. IEEE Trans. Syst. Man Cybern. Part A 29(4), 411–416 (1999)

    Article  Google Scholar 

  17. Ye, Q., Doermann, D.: Text detection and recognition in imagery: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 37(7), 1480–1500 (2015)

    Article  Google Scholar 

  18. Van Phan, T., Nakagawa, M.: Text/non-text classification in online handwritten documents with recurrent neural networks. In: 2014 14th International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 23–28 (2014)

  19. Karatzas, D., Antonacopoulos, A.: Colour text segmentation in web images based on human perception. Image Vis. Comput. 25, 564–577 (2007)

    Article  MATH  Google Scholar 

  20. Van Phan, T., Nakagawa, M.: Combination of global and local contexts for text/non-text classification in heterogeneous online handwritten documents. Pattern Recognit. 51, 112–124 (2016)

    Article  Google Scholar 

  21. Delaye, A., Liu, C.-L.: Contextual text/non-text stroke classification in online handwritten notes with conditional random fields. Pattern Recognit. 47(3), 959–968 (2014)

    Article  Google Scholar 

  22. Delaye, A., Liu, C.-L.: Multi-class segmentation of free-form online documents with tree conditional random fields. Int. J. Doc. Anal. Recognit. 17(4), 313–329 (2014)

    Article  Google Scholar 

  23. Degtyarenko, I., Radyvonenko, O., Bokhan, K., Khomenko, V.: Text/shape classifier for mobile applications with handwriting input. Int. J. Doc. Anal. Recognit. 19(4), 369–379 (2016)

    Article  Google Scholar 

  24. Bresler, M., Pråša, D., Hlaváč, V.: Online recognition of sketched arrow-connected diagrams. Int. J. Doc. Anal. Recognit. 19(3), 253–267 (2016)

    Article  Google Scholar 

  25. Lucas, S.M.: ICDAR 2005 text locating competition results. In: Eighth International Conference on Document Analysis and Recognition, 2005. Proceedings, pp. 80–84 (2005)

  26. Yao et al., C.: Incidental Scene Text Understanding: Recent Progresses on ICDAR 2015 Robust Reading Competition Challenge 4. arXiv Prepr. arXiv1511.09207 (2015)

  27. Zhong, Y., Zhang, H., Jain, A.K.: Automatic caption localization in compressed video. IEEE Trans. Pattern Anal. Mach. Intell. 22(4), 385–392 (2000)

    Article  Google Scholar 

  28. Ye, Q., Huang, Q., Gao, W., Zhao, D.: Fast and robust text detection in images and video frames. Image Vis. Comput. 23(6), 565–576 (2005)

    Article  Google Scholar 

  29. Haritaoglu, I.: Scene text extraction and translation for handheld devices. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2001, vol. 2, pp. II-408 (2001)

  30. Chen, X., Yang, J., Zhang, J., Waibel, A.: Automatic detection and recognition of signs from natural scenes. IEEE Trans. Image Process. 13(1), 87–99 (2004)

    Article  Google Scholar 

  31. Sermanet, P., Chintala, S., LeCun, Y.: Convolutional neural networks applied to house numbers digit classification. In: 2012 21st International Conference on Pattern Recognition (ICPR), pp. 3288–3291 (2012)

  32. He, Z., Liu, J., Ma, H., Li, P.: A new automatic extraction method of container identity codes. IEEE Trans. Intell. Transp. Syst. 6(1), 72–78 (2005)

    Article  Google Scholar 

  33. Lienhart, R., Wernicke, A.: Localizing and segmenting text in images and videos. IEEE Trans. Circuits Syst. Video Technol. 12(4), 256–268 (2002)

    Article  Google Scholar 

  34. Lu, S., Chen, T., Tian, S., Lim, J.-H., Tan, C.-L.: Scene text extraction based on edges and support vector regression. Int. J. Doc. Anal. Recognit. 18(2), 125–135 (2015)

    Article  Google Scholar 

  35. Weinman, J.J., Learned-Miller, E., Hanson, A.R.: Scene text recognition using similarity and a lexicon with sparse belief propagation. IEEE Trans. Pattern Anal. Mach. Intell. 31(10), 1733–1746 (2009)

    Article  Google Scholar 

  36. Clark, P., Mirmehdi, M.: Recognising text in real scenes. Int. J. Doc. Anal. Recognit. 4(4), 243–257 (2002)

    Article  Google Scholar 

  37. Perantonis, S.J., Gatos, B., Maragos, V., Karkaletsis, V., Petasis, G.: Text area identification in web images. In: Vouros, G.A., Panayiotopoulos, T. (eds.) Methods and Applications of Artificial Intelligence, pp. 82–92. Springer, Berlin (2004)

    Chapter  Google Scholar 

  38. Lopresti, D., Zhou, J.: Locating and recognizing text in WWW images. Inf. Retr. Boston 2(2–3), 177–206 (2000)

    Article  Google Scholar 

  39. Brown, M.K., Glinski, S.C., Schmult, B.C.: Web page analysis for voice browsing. In: Proceedings of the 1st International Workshop on Web Document Analysis (WDA’2001), pp. 59–61 (2001)

  40. Penn, G., Hu, J., Luo, H., McDonald, R.: Flexible web document analysis for delivery to narrow-bandwidth devices. In: Document Analysis and Recognition (ICDAR), p. 1074 (2001)

  41. Antonacopoulos, A., Hu, J.: Web Document Analysis: Challenges and Opportunities, vol. 55. World Scientific, Singapore (2003)

    Google Scholar 

  42. Lu, Z.: Detection of text regions from digital engineering drawings. IEEE Trans. Pattern Anal. Mach. Intell. 20, 431–439 (1998)

    Article  Google Scholar 

  43. Haralick, R.M., Queeney, D.: Understanding engineering drawings. Comput. Graph. Image Process. 20(3), 244–258 (1982)

    Article  Google Scholar 

  44. Le, V.P., Nayef, N., Visani, M., Ogier, J.-M., De Tran, C.: Text and non-text segmentation based on connected component features. In: 13th International Conference on Document Analysis and Recognition (ICDAR), pp. 1096–1100 (2015)

  45. Jayadevan, R., Kolhe, S.R., Patil, P.M., Pal, U.: Automatic processing of handwritten bank cheque images: a survey. Int. J. Doc. Anal. Recognit. 15(4), 267–296 (2012)

    Article  Google Scholar 

  46. Hönes, F., Lichter, J.: Layout extraction of mixed mode documents. Mach. Vis. Appl. 7(4), 237–246 (1994)

    Article  Google Scholar 

  47. Handwritten Document Images. https://goo.gl/images/WyKY7e. Accessed: 08 Sept 2017

  48. Chen, Y.-L., Hong, Z.-W., Chuang, C.-H.: A knowledge-based system for extracting text-lines from mixed and overlapping text/graphics compound document images. Expert Syst. Appl. 39(1), 494–507 (2012)

    Article  Google Scholar 

  49. Zagoris, K., Chatzichristofis, S.A., Papamarkos, N.: Text localization using standard deviation analysis of structure elements and support vector machines. EURASIP J. Adv. Signal Process. 2011(1), 1–12 (2011)

    Article  Google Scholar 

  50. Emmanouilidis, C., Batsalas, C., Papamarkos, N.: Development and evaluation of text localization techniques based on structural texture features and neural classifiers. In: 10th International Conference on Document Analysis and Recognition, ICDAR’09, pp. 1270–1274 (2009)

  51. Vu, H.N., Tran, T.A., Na, I.S., Kim, S.H.: Automatic extraction of text regions from document images by multilevel thresholding and k-means clustering. In: 2015 IEEE/ACIS 14th International Conference on Computer and Information Science (ICIS), pp. 329–334 (2015)

  52. Sobottka, K., Kronenberg, H., Perroud, T., Bunke, H.: Text extraction from colored book and journal covers. Int. J. Doc. Anal. Recognit. 2(4), 163–176 (2000)

    Google Scholar 

  53. Roy, P.P., Llados, J., Pal, U.: Text/graphics separation in color maps. In: Proceedings—International Conference on Computing: Theory and Applications, ICCTA 2007 (2007)

  54. Chiang, Y.-Y., Knoblock, C.A.: Recognizing text in raster maps. Geoinformatica 19(1), 1–27 (2015)

    Google Scholar 

  55. Oyedotun, O.K., Khashman, A.: Document segmentation using textural features summarization and feedforward neural network. Appl. Intell. 45, 1–15 (2016)

    Article  Google Scholar 

  56. Vil’kin, A.M., Safonov, I.V., Egorova, M.A.: Algorithm for segmentation of documents based on texture features. Pattern Recognit. Image Anal. 23(1), 153–159 (2013)

    Article  Google Scholar 

  57. Lin, M.W., Tapamo, J.-R., Ndovie, B.: A texture-based method for document segmentation and classification. S. Afr. Comput. J. 36(1), 49–56 (2006)

    Google Scholar 

  58. Shih, F.Y., Chen, S.S.: Adaptive document block segmentation and classification. IEEE Trans. Syst. Man Cybern. Part B 26(5), 797–802 (1996)

    Article  Google Scholar 

  59. Park, H.C., Ok, S.Y., Cho, H.: Word extraction in text/graphic mixed image using 3-dimensional graph model. ICCPOL 99, 171–176 (1999)

    Google Scholar 

  60. Antonacopoulos, A., Ritchings, R.T.: Representation and classification of complex-shaped printed regions using white tiles. In: Proceedings of the 3rd International Conference on Document Analysis and Recognition, August 14–16, pp. 1132–1135 (1995)

  61. Bhowmik, S., Sarkar, R., Nasipuri, M.: Text and non-text separation in handwritten document images using local binary pattern operator. In: Proceedings of the First International Conference on Intelligent Computing and Communication, pp. 507–515 (2017)

  62. Chen, Y.L., Wu, B.F.: A multi-plane approach for text segmentation of complex document images. Pattern Recognit. 42, 1419–1444 (2009)

    Article  MATH  Google Scholar 

  63. Strouthopoulos, C., Papamarkos, N., Atsalakis, A.E.: Text extraction in complex color documents. Pattern Recognit. 35(8), 1743–1758 (2002)

    Article  MATH  Google Scholar 

  64. Cao, R., Tan, C.L.: Text/graphics separation in maps. In: Blostein, D., Kwon, Y.B. (eds.) Graphics Recognition Algorithms and Applications, pp. 167–177. Springer, Berlin (2001)

    Google Scholar 

  65. Chiang, Y.Y., Knoblock, C.A.: An approach for recognizing text labels in raster maps. In: Proceedings—International Conference on Pattern Recognition (2010)

  66. Velázquez, A., Levachkine, S.: Text/graphics separation and recognition in raster-scanned color cartographic maps. In: Lladós, J., Kwon, Y.-B. (eds.) Graphics Recognition. Recent Advances and Perspectives, pp. 63–74. Springer, Berlin (2003)

  67. Baird, H.S., Jones, S.E., Fortune, S.J.: Image segmentation by shape-directed covers. In: Pattern Recognition, 1990. 10th International Conference on Proceedings, vol. 1, pp. 820–825 (1990)

  68. Ha, J., Haralick, R.M., Phillips, I.T.: Recursive XY cut using bounding boxes of connected components. Proceedings of the Third International Conference on Document Analysis and Recognition 2, 952–955 (1995)

    Article  Google Scholar 

  69. Sun, H.-M.: Page segmentation for Manhattan and Non-Manhattan layout documents via selective CRLA. In: Eighth International Conference on Document Analysis and Recognition (ICDAR’05), pp. 116–120 (2005)

  70. Agrawal, M., Doermann, D.: Voronoi++: a dynamic page segmentation approach based on voronoi and docstrum features. In: 2009 10th International Conference on Document Analysis and Recognition, pp. 1011–1015 (2009)

  71. Ferilli, S., Basile, T., Esposito, F.: A histogram-based technique for automatic threshold assessment in a run length smoothing-based algorithm. In: Proceedings of the 9th IAPR International Workshop on Document Analysis Systems, pp. 349–356 (2010)

  72. Pan, Y., Zhao, Q., Kamata, S.: Document layout analysis and reading order determination for a reading robot. In: TENCON 2010–2010 IEEE Region 10 Conference, pp. 1607–1612 (2010)

  73. Jain, A.K., Yu, B.: Document representation and its application to page decomposition. IEEE Trans. Pattern Anal. Mach. Intell. 20(3), 294–308 (1998)

    Article  Google Scholar 

  74. Smith, R.W.: Hybrid page layout analysis via tab-stop detection. In: 2009 10th International Conference on Document Analysis and Recognition, pp. 241–245 (2009)

  75. Chen, K., Yin, F., Liu, C.L.: Hybrid page segmentation with efficient whitespace rectangles extraction and grouping. In: 2013 12th International Conference on Document Analysis and Recognition, pp. 958–962 (2013)

  76. Fan, K.-C., Wang, L.-S.: Classification of document blocks using density feature and connectivity histogram. Pattern Recognit. Lett. 16(9), 955–962 (1995)

    Article  Google Scholar 

  77. Antonacopoulos, A., Ritchings, R.T.: Representation and classification of complex-shaped printed regions using white tiles. Proceedings of the Third International Conference on Document Analysis and Recognition 2, 1132–1135 (1995)

    Article  Google Scholar 

  78. Pavlidis, T., Zhou, J.: Page segmentation and classification. CVGIP Graph. Models Image Process. 54(6), 484–496 (1992)

    Article  Google Scholar 

  79. Drivas, D., Amin, A.: Page segmentation and classification utilising a bottom-up approach. Proceedings of the Third International Conference on Document Analysis and Recognition 2, 610–614 (1995)

    Article  Google Scholar 

  80. Chowdhury, S.P., Mandal, S., Das, A.K., Chanda, B.: Segmentation of text and graphics from document images. In: Ninth International Conference on Document Analysis and Recognition, ICDAR 2007, vol. 2, pp. 619–623 (2007)

  81. Bloomberg, D.S.: Multiresolution morphological approach to document image analysis. In: Proceedings of the International Conference on Document Analysis and Recognition, Saint-Malo, France (1991)

  82. Bukhari, S.S., Shafait, F., Breuel, T.M.: Improved document image segmentation algorithm using multiresolution morphology. In: IS&T/SPIE Electronic Imaging, pp. 78740D–78740D (2011)

  83. Ablameyko, S.V., Uchida, S.: Recognition of engineering drawing entities: review of approaches. Int. J. Image Graph. 7(4), 709–733 (2007)

    Article  Google Scholar 

  84. Tombre, K., Tabbone, S., Pélissier, L., Lamiroy, B., Dosch, P.: Text/graphics separation revisited. In: Lopresti, D., Hu, J., Kashi, R. (eds.) Document Analysis Systems V, pp. 200–211. Springer, Berlin (2002)

    Chapter  Google Scholar 

  85. Lin, S.-C., Ting, C.-K.: A new approach for detection of dimensions set in mechanical drawings. Pattern Recognit. Lett. 18(4), 367–373 (1997)

    Article  Google Scholar 

  86. Ah-Soon, C., Tombre, K.: Variations on the analysis of architectural drawings. Proceedings of the Fourth International Conference on Document Analysis and Recognition 1, 347–351 (1997)

    Article  Google Scholar 

  87. Lai, C.P., Kasturi, R.: Detection of dimension sets in engineering drawings. IEEE Trans. Pattern Anal. Mach. Intell. 16(8), 848–855 (1994)

    Article  Google Scholar 

  88. Do, T.-H., Tabbone, S., Ramos-Terrades, O.: Text/graphic separation using a sparse representation with multi-learned dictionaries. In: 2012 21st International Conference on Pattern Recognition (ICPR), pp. 689–692 (2012)

  89. De, P., Mandal, S., Bhowmick, P., Das, A.: ASKME: adaptive sampling with knowledge-driven vectorization of mechanical engineering drawings. Int. J. Doc. Anal. Recognit. 19(1), 11–29 (2016)

    Article  Google Scholar 

  90. Favreau, J.-D., Lafarge, F., Bousseau, A.: Fidelity vs. simplicity: a global approach to line drawing vectorization. ACM Trans. Graph. 35, 120 (2016)

    Article  Google Scholar 

  91. Dori, D., Velkovitch, Y.: Segmentation and recognition of dimensioning text from engineering drawings. Comput. Vis. Image Underst. 69(2), 196–201 (1998)

    Article  Google Scholar 

  92. Casey, R., Ferguson, D., Mohiuddin, K., Walach, E.: Intelligent forms processing system. Mach. Vis. Appl. 5(3), 143–155 (1992)

    Article  Google Scholar 

  93. Yu, B., Jain, A.K.: A generic system for form dropout. IEEE Trans. Pattern Anal. Mach. Intell. 18(11), 1127–1134 (1996)

    Article  Google Scholar 

  94. Wang, D., Srihari, S.N.: Analysis of form images. Int. J. Pattern Recognit. Artif. Intell. 8(5), 1031–1052 (1994)

    Article  Google Scholar 

  95. Hori, O., Doermann, D.S.: Robust table-form structure analysis based on box-driven reasoning. Proceedings of the Third International Conference on Document Analysis and Recognition 1, 218–221 (1995)

    Article  Google Scholar 

  96. Dzuba, G., Filatov, A., Gershuny, D., Kil, I., Nikitin, V.: Check amount recognition based on the cross validation of courtesy and legal amount fields. Int. J. Pattern Recognit. Artif. Intell. 11(4), 639–655 (1997)

    Article  Google Scholar 

  97. Heutte, L., et al.: Multi-bank check recognition system: consideration on the numeral amount recognition module. Int. J. Pattern Recognit. Artif. Intell. 11(4), 595–618 (1997)

    Article  Google Scholar 

  98. Knerr, S., Anisimov, V., Baret, O., Gorski, N., Price, D., Simon, J.-C.: The A2iA intercheque system: courtesy amount and legal amount recognition for French checks. Int. J. Pattern Recognit. Artif. Intell. 11(4), 505–548 (1997)

    Article  Google Scholar 

  99. Govindaraju, V., Srihari, S.N.: Separating handwritten text from interfering strokes. In: From Pixels to Features. III Front. Handwritten Recognition, pp. 17–28 (1992)

  100. Dimauro, G., Impedovo, S., Pirlo, G., Salzo, A.: Removing underlines from handwritten text: an experimental investigation. In: Impedovo, S., Downton, A.C. (eds.) Progress in Handwriting Recognition, pp. 497–501. World Scientific (1997)

  101. Akiyama, T., Hagita, N.: Automated entry system for printed documents. Pattern Recognit. 23(11), 1141–1154 (1990)

    Article  Google Scholar 

  102. Liu, K., Suen, C.Y., Cheriet, M., Said, J.N., Nadal, C., Tang, Y.Y.: Automatic extraction of baselines and data from check images. Int. J. Pattern Recognit. Artif. Intell. 11(4), 675–697 (1997)

    Article  Google Scholar 

  103. Hase, H., Shinokawa, T., Yoneda, M., Suen, C.Y.: Character string extraction from color documents. Pattern Recognit. 34(7), 1349–1365 (2001)

    Article  MATH  Google Scholar 

  104. Clavelli, A., Karatzas, D.: Text segmentation in colour posters from the Spanish civil war era. In: 10th International Conference on Document Analysis and Recognition, ICDAR’09, pp. 181–185 (2009)

  105. Li, L., Nagy, G., Samal, A., Seth, S., Xu, Y.: Integrated text and line-art extraction from a topographic map. Int. J. Doc. Anal. Recognit. 2, 177–185 (2000)

    Article  Google Scholar 

  106. Dhar, D.B., Chanda, B.: Extraction and recognition of geographical features from paper maps. Int. J. Doc. Anal. Recognit. 8(4), 232–245 (2006)

    Article  Google Scholar 

  107. Cordeiro, A., Pina, P.: Colour map object separation. In: Proceedings of the ISPRS Mid-Term Symposium 2006, Remote Sensing: From Pixels to Processes, pp. 243–247 (2006)

  108. San, L.M., Yatim, S.M., Sheriff, N.A.M., Isrozaidi, N.: Extracting contour lines from scanned topographic maps. In: International Conference on Computer Graphics, Imaging and Visualization, CGIV 2004. Proceedings, pp. 187–192 (2004)

  109. Chen, Y., Wang, R., Qian, J.: Extracting contour lines from common-conditioned topographic maps. IEEE Trans. Geosci. Remote Sens. 44(4), 1048–1057 (2006)

    Article  Google Scholar 

  110. Leyk, S.: Segmentation of colour layers in historical maps based on hierarchical colour sampling. In: International Workshop on Graphics Recognition, pp. 231–241 (2009)

  111. Kasturi, R., Bow, S.T., El-Masri, W., Shah, J., Gattiker, J.R., Mokate, U.B.: A system for interpretation of line drawings. IEEE Trans. Pattern Anal. Mach. Intell. 12(10), 978–992 (1990)

    Article  Google Scholar 

  112. Raveaux, R., Eugen, B., Locteau, H., Adam, S., Héroux, P., Trupin, E.: A graph classification approach using a multi-objective genetic algorithm application to symbol recognition. In: International Workshop on Graph-Based Representations in Pattern Recognition, pp. 361–370 (2007)

  113. Raveaux, R., Burie, J.-C., Ogier, J.-M.: Object extraction from colour cadastral maps. In: The Eighth IAPR International Workshop on Document Analysis Systems, DAS’08, pp. 506–514 (2008)

  114. Pezeshk, A., Tutwiler, R.L.: Automatic feature extraction and text recognition from scanned topographic maps. IEEE Trans. Geosci. Remote Sens. 49, 5047–5063 (2011)

    Article  Google Scholar 

  115. Chiang, Y.-Y., Knoblock, C.A.: Recognition of multi-oriented, multi-sized, and curved text. In: International Conference on Document Analysis and Recognition, pp. 1399–1403 (2011)

  116. Chiang, Y.-Y., Knoblock, C.A.: A general approach for extracting road vector data from raster maps. Int. J. Doc. Anal. Recognit. 16(1), 55–81 (2013)

    Article  Google Scholar 

  117. Nazari, N.H., Tan, T., Chiang, Y.-Y.: Integrating text recognition for overlapping text detection in maps. Electron. Imaging 2016(17), 1–8 (2016)

    Article  Google Scholar 

  118. Kavitha, A.S., Shivakumara, P., Kumar, G.H., Lu, T.: Text segmentation in degraded historical document images. Egypt. Inform. J. 17, 189–197 (2016)

    Article  Google Scholar 

  119. Shivakumara, P., Sreedhar, R.P., Phan, T.Q., Lu, S., Tan, C.L.: Multioriented video scene text detection through Bayesian classification and boundary growing. IEEE Trans. Circuits Syst. Video Technol. 22(8), 1227–1235 (2012)

    Article  Google Scholar 

  120. Cohen, R., Asi, A., Kedem, K., El-Sana, J., Dinstein, I.: Robust text and drawing segmentation algorithm for historical documents. In: Proceedings of the 2nd International Workshop on Historical Document Imaging and Processing, pp. 110–117 (2013)

  121. ABBYY Fine reader. https://finereaderonline.com/en-us. Accessed Oct 2017

  122. Mendelson, E.: ABBYY finereader professional 9.0. PC Mag. (2008)

  123. OCRopus. https://en.wikipedia.org/wiki/OCRopus. Accessed Oct 2017

  124. Breuel, T.M.: The OCRopus open source OCR system. Electron. Imaging 2008, 68150F–68150F (2008)

    Google Scholar 

  125. Smith, R.W.: History of the Tesseract OCR engine: what worked and what didn’t. In: IS&T/SPIE Electronic Imaging, p. 865802 (2013)

  126. Tesseract-OCR. https://github.com/tesseract-ocr/tesseract/wiki. Accessed Oct 2017

  127. Lichman, M.: UCI Machine Learning Repository, University of California, School of Information and Computer Science, Irvine, CA, (2013). http://archive.ics.uci.edu/ml. Accessed Oct 2017

  128. UW-I English Document Image Database. http://isis-data.science.uva.nl/events/dlia//datasets/uwash1.html. Accessed Oct 2017

  129. UW-II English/Japanese Document Image Database. http://isis-data.science.uva.nl/events/dlia//datasets/uwash2.html. Accessed Oct 2017

  130. UW-III English/Technical Document Image Database. http://isis-data.science.uva.nl/events/dlia//datasets/uwash3.html. Accessed Oct 2017

  131. Antonacopoulos, A., Bridson, D., Papadopoulos, C., Pletschacher, S.: A realistic dataset for performance evaluation of document layout analysis. In: 10th International Conference on Document Analysis and Recognition, ICDAR’09, pp. 296–300 (2009)

  132. ICDAR 2009 Dataset. http://www.primaresearch.org/dataset/index.php. Accessed Oct 2017

  133. The MediaTeam document database II. http://www.mediateam.oulu.fi/downloads/MTDB/. Accessed Oct 2017

  134. Islamic Heritage Project (IHP) Collection. http://ocp.hul.harvard.edu/ihp/. Accessed Oct 2017

  135. UNLV Database. http://www.isri.unlv.edu/ISRI/OCRtk. Accessed Oct 2017

  136. 6-Inch Historical Ordnance Survey Maps of the United Kingdom (UK). http://maps.nls.uk/os/6inch-england-and-wales/info2.html. Accessed Oct 2017

  137. Wang, D., Srihari, S.N.: Classification of newspaper image blocks using texture analysis. Comput. Vis. Graph. Image Process. 47(3), 327–352 (1989)

    Article  Google Scholar 

  138. Liu, W.Y., Dori, D.: A proposed scheme for performance evaluation of graphics/text separation algorithms. Graph. Recognit. Algorithms Syst. 1389, 359–371 (1998)

    Article  Google Scholar 

  139. Shafait, F.: Camera-Based Document Analysis and Recognition. Springer, Berlin (2007)

    Google Scholar 

  140. Kasar, T., Kumar, J., Ramakrishnan, A.G.: Font and background color independent text binarization. In: Second International Workshop on Camera-based Document Analysis and Recognition, pp. 3–9 (2007)

  141. Drivas, D., Amin, A.: Page Segmentation and Classification Utilising Bottom-Up Approach. In: Proceedings of the 3rd International Conference on Document Analysis and Recognition, Aug 14–16, pp. 0–4 (1995)

  142. Tran, T.A., Oh, K., Na, I.-S., Lee, G.-S., Yang, H.-J., Kim, S.-H.: A robust system for document layout analysis using multilevel homogeneity structure. Expert Syst. Appl. 85, 99–113 (2017)

    Article  Google Scholar 

  143. Tran, T.A., Na, I.S., Kim, S.H.: Page segmentation using minimum homogeneity algorithm and adaptive mathematical morphology. Int. J. Doc. Anal. Recognit. 19(3), 191–209 (2016)

    Article  Google Scholar 

  144. Maderlechner, G.: Symbolic subtraction of fixed formatted graphics and text from filled in forms. In: Proceedings of the IAPR Workshop on Machine Vision and Applications, Tokyo, November 1990, pp. 457–459 (1990)

  145. Doermann, D.S., Rosenfeld, A.: The interpretation and reconstruction of interfering strokes. Front. Handwrit. Recognit. 3, 41–50 (1993)

    Google Scholar 

  146. Tang, Y.Y., Suen, C.Y., De Yan, C., Cheriet, M.: Financial document processing based on staff line and description language. IEEE Trans. Syst. Man. Cybern. 25(5), 738–754 (1995)

    Article  Google Scholar 

  147. Moghaddam, R.F., Cheriet, M.: A multi-scale framework for adaptive binarization of degraded document images. Pattern Recognit. 43(6), 2186–2198 (2010)

    Article  MATH  Google Scholar 

  148. Hedjam, R., Moghaddam, R.F., Cheriet, M.: A spatially adaptive statistical method for the binarization of historical manuscripts and degraded document images. Pattern Recognit. 44(9), 2184–2196 (2011)

    Article  Google Scholar 

  149. Howe, N.R.: Document binarization with automatic parameter tuning. Int. J. Doc. Anal. Recognit. 16(3), 247–258 (2013)

    Article  Google Scholar 

  150. Mitianoudis, N., Papamarkos, N.: Document image binarization using local features and Gaussian mixture modeling. Image Vis. Comput. 38, 33–51 (2015)

    Article  Google Scholar 

  151. Mandal, S., Das, S., Agarwal, A., Chanda, B.: Binarization of degraded handwritten documents based on morphological contrast intensification. In: Third International Conference on Image Information Processing (ICIIP), pp. 73–78 (2015)

  152. Adak, C., Maitra, P., Chaudhuri, B.B., Blumenstein, M.: Binarization of old halftone text documents. In: TENCON 2015–2015 IEEE Region 10 Conference, pp. 1–5 (2015)

  153. Das, B., Bhowmik , S., Saha, A., sarkar, R.: An adaptive foreground-background separation method for effective binarization of document images. In: 8th International Conference on Soft Computing and Pattern Recognition (2016)

  154. Kang, L., Doermann, D.: Template based segmentation of touching components in handwritten text lines. In: International Conference on Document Analysis and Recognition (ICDAR), pp. 569–573 (2011)

  155. Liu, C.-L., Sako, H., Fujisawa, H.: Effects of classifier structures and training regimes on integrated segmentation and recognition of handwritten numeral strings. IEEE Trans. Pattern Anal. Mach. Intell. 26(11), 1395–1407 (2004)

    Article  Google Scholar 

  156. Wang, Y., Liu, X., Jia, Y.: Statistical modeling and learning for recognition-based handwritten numeral string segmentation. In: 10th International Conference on Document Analysis and Recognition, ICDAR’09, pp. 421–425 (2009)

  157. Papavassiliou, V., Stafylakis, T., Katsouros, V., Carayannis, G.: Handwritten document image segmentation into text lines and words. Pattern Recognit. 43(1), 369–377 (2010)

    Article  MATH  Google Scholar 

  158. Wshah, S., Shi, Z., Govindaraju, V.: Segmentation of Arabic handwriting based on both contour and skeleton segmentation. In: 10th International Conference on Document Analysis and Recognition, ICDAR’09, pp. 793–797 (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Sarkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhowmik, S., Sarkar, R., Nasipuri, M. et al. Text and non-text separation in offline document images: a survey. IJDAR 21, 1–20 (2018). https://doi.org/10.1007/s10032-018-0296-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10032-018-0296-z

Keywords