Abstract
The automatic creation of a repository of the building’s floor plan helps a lot to the architects to reuse them. The basic approach is to extract and recognize texts, symbols or graphics to retrieve the information of the floor plan from the images. This paper proposes a floor plan information retrieval algorithm. The proposed algorithm is based on shape extraction and room identification.\(\alpha \)-shape is used for finding an accurate shape. From the detected shapes, actual areas of rooms are calculated. Later, a regression model-based binary room classification model is proposed to classify them into room-type, i.e., bedroom, drawing room, kitchen, and non-room-type, i.e., parking porch, bathroom, study room and prayer room. The proposed model is tested on the CVC-FP dataset with an average room detection accuracy of 85.71% and room recognition accuracy of 88%.









Similar content being viewed by others
References
Ahmed, S., Liwicki, M., Weber, M., Dengel, A.: Improved automatic analysis of architectural floor plans. In: 2011 International Conference on Document Analysis and Recognition, pp. 864–869. IEEE (2011)
Ahmed, S., Liwicki, M., Weber, M., Dengel, A.: Automatic room detection and room labeling from architectural floor plans. In: 2012 10th IAPR International Workshop on Document Analysis Systems, pp. 339–343. IEEE (2012)
Ahmed, S., Weber, M., Liwicki, M., Dengel, A.: Text/graphics segmentation in architectural floor plans. In: 2011 International Conference on Document Analysis and Recognition, pp. 734–738. IEEE (2011)
Al-Tamimi, M.S.H., Sulong, G., Shuaib, I.L.: Alpha shape theory for 3D visualization and volumetric measurement of brain tumor progression using magnetic resonance images. Magn. Resonance Imaging 33(6), 787–803 (2015)
Belkasim, S.O., Shridhar, M., Ahmadi, M.: Pattern recognition with moment invariants: a comparative study and new results. Pattern Recognit. 24(12), 1117–1138 (1991)
Bunke, H.: Graph matching: theoretical foundations, algorithms, and applications. Proc. Vis. Interface 2000, 82–88 (2000)
Delalandre, M., Valveny, E., Pridmore, T., Karatzas, D.: Generation of synthetic documents for performance evaluation of symbol recognition & spotting systems. Int. J. Doc. Anal. Recognit. (IJDAR) 13(3), 187–207 (2010)
de las Heras, L.P., Ahmed, S., Liwicki, M., Valveny, E., Sánchez, G.: Statistical segmentation and structural recognition for floor plan interpretation. Int. J. Doc. Anal. Recognit. (IJDAR) 17(3), 221–237 (2014)
de las Heras, L.P., Terrades, O.R., Robles, S., Sánchez, G.: A new database for structural floor plan analysis and its groundtruthing tool. Int. J. Doc. Anal. Recognit. (IJDAR) 18(1), 15–30 (2015)
Dutta, A., Lladós, J., Pal, U.: A symbol spotting approach in graphical documents by hashing serialized graphs. Pattern Recognit. 46(3), 752–768 (2013)
Ganapathy, H., Ramu, P., Muthuganapathy, R.: Alpha shape based design space decomposition for island failure regions in reliability based design. Struct. Multidiscip. Optim. 52(1), 121–136 (2015)
Hoang, T.V., Tabbone, S.: Text extraction from graphical document images using sparse representation. In: Proceedings of the 9th IAPR International Workshop on Document Analysis Systems, pp. 143–150. ACM (2010)
Jang, H., Yu, K., Yang, J.: Indoor reconstruction from floorplan images with a deep learning approach. ISPRS Int. J. Geo-Inf. 9(2), 65 (2020)
Kalervo, A., Ylioinas, J., Häikiö, M., Karhu, A., Kannala, J.: Cubicasa5k: a dataset and an improved multi-task model for floorplan image analysis. In: Scandinavian Conference on Image Analysis, pp. 28–40. Springer (2019)
Katsuri, R., Bow, S.T., El-Masri, W., Shah, J., Gattiker, J.R., Mokate, U.B.: A system for interpretation of line drawings. IEEE Trans. Pattern Anal. Mach. Intell. 10, 978–992 (1990)
Lladós, J., Martí, E., Villanueva, J.J.: Symbol recognition by error-tolerant subgraph matching between region adjacency graphs. IEEE Trans. Pattern Anal. Mach. Intell. 23(10), 1137–1143 (2001)
Macé, S., Locteau, H., Valveny, E., Tabbone, S.: A system to detect rooms in architectural floor plan images. In: Proceedings of the 9th IAPR International Workshop on Document Analysis Systems, pp. 167–174. ACM (2010)
Qiu, H., Hancock, E.R.: Graph matching and clustering using spectral partitions. Pattern Recognit. 39(1), 22–34 (2006)
Ravagli, J., Ziran, Z., Marinai, S.: Text recognition and classification in floor plan images. In: 2019 International Conference on Document Analysis and Recognition Workshops (ICDARW), vol. 1, pp. 1–6. IEEE (2019)
Rusiñol, M., Lladós, J.: Symbol Spotting in Digital Libraries. Springer, Berlin (2010)
Rusiñol, M., Lladós, J., Sánchez, G.: Symbol spotting in vectorized technical drawings through a lookup table of region strings. Pattern Anal. Appl. 13(3), 321–331 (2010)
Santosh, K.: Document Image Analysis: Current Trends and Challenges in Graphics Recognition. Springer, Berlin (2018)
Santosh, K., Lamiroy, B., Wendling, L.: Symbol recognition using spatial relations. Pattern Recognit. Lett. 33(3), 331–341 (2012)
Santosh, K., Lamiroy, B., Wendling, L.: Dtw-radon-based shape descriptor for pattern recognition. Int. J. Pattern Recognit. Artif. Intell. 27(03), 1350008 (2013)
Santosh, K., Lamiroy, B., Wendling, L.: Integrating vocabulary clustering with spatial relations for symbol recognition. Int. J. Doc. Anal. Recognit. (IJDAR) 17(1), 61–78 (2014)
Santosh, K., Wendling, L.: Graphical symbol recognition. In: Webster, J.G. (ed.) Wiley Encyclopedia of Electrical and Electronics Engineering, pp. 1–22. Wiley (1999)
Santosh, K., Wendling, L., Lamiroy, B.: Bor: bag-of-relations for symbol retrieval. Int. J. Pattern Recognit. Artif. Intell. 28(06), 1450017 (2014)
Sharma, D., Chattopadhyay, C., Harit, G.: A unified framework for semantic matching of architectural floorplans. In: 2016 23rd International Conference on Pattern Recognition (ICPR), pp. 2422–2427. IEEE (2016)
Sharma, D., Gupta, N., Chattopadhyay, C., Mehta, S.: A novel feature transform framework using deep neural network for multimodal floor plan retrieval. Int. J. Doc. Anal. Recognit. (IJDAR) 22(4), 417–429 (2019)
Social Science Statistics (2018). https://www.socscistatistics.com/tests/anova/default2.aspx. Accessed 6 June 2020
Tabbone, S., Wendling, L., Tombre, K.: Matching of graphical symbols in line-drawing images using angular signature information. Doc. Anal. Recognit. 6(2), 115–125 (2003)
Takada, Y., Inoue, N., Yamasaki, T., Aizawa, K.: Similar floor plan retrieval featuring multi-task learning of layout type classification and room presence prediction. In: 2018 IEEE International Conference on Consumer Electronics (ICCE), pp. 1–6. IEEE (2018)
Tombre, K., Tabbone, S., Pélissier, L., Lamiroy, B., Dosch, P.: Text/graphics separation revisited. In: International Workshop on Document Analysis Systems, pp. 200–211. Springer (2002)
Wessel, R., Blümel, I., Klein, R.: The room connectivity graph: shape retrieval in the architectural domain. In: The 16-th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision in co-operation with EUROGRAPHICS, University of West Bohemia Plzen, Czech Republic, February 4–7, pp.73–80 (2008)
Yan, L., Wenyin, L.: Engineering drawings recognition using a case-based approach. In: Proceedings of Seventh International Conference on Document Analysis and Recognition, 2003, pp. 190–194. IEEE (2003)
Zeng, Z., Li, X., Yu, Y.K., Fu, C.W.: Deep floor plan recognition using a multi-task network with room-boundary-guided attention. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 9096–9104 (2019)
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Mewada, H.K., Patel, A.V., Chaudhari, J. et al. Automatic room information retrieval and classification from floor plan using linear regression model. IJDAR 23, 253–266 (2020). https://doi.org/10.1007/s10032-020-00357-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10032-020-00357-x