Skip to main content
Log in

Classifying image texture with statistical landscape features

  • Theoretical Advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

This paper proposes to use three-dimensional information derived from the graph of an image function for texture description. The graph of an image function is a rumpled surface appearing like a landscape. To characterize the texture through this landscape, six novel texture feature curves based on the statistics of the geometrical and topological properties of the solids shaped by the graph and a variable horizontal plane are used. The proposed statistical landscape features have been shown by systematic experiments to offer very low error rates on a large subset of the Brodatz texture album having excluded some nonhomogeneous images, the entire Brodatz texture set, as well as the VisTex texture collection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Coggins JM (1982) A framework for texture analysis based on spatial filtering. PhD thesis, Computer Science Department, Michigan State University

  2. Tamura H, Mori S, Yamawaki Y (1978) Textural features corresponding to visual perception. IEEE Trans Syst Man Cybern SMC 8(6):460–473

    Google Scholar 

  3. Haralick RM (1979). Statistical and structural approaches to texture. Proc IEEE 67(5):786–804

    Article  Google Scholar 

  4. Karu K, Jain AK, Bolle RM (1996) Is there any texture in the image? Pattern Recognit 29(9):1437–1446

    Article  Google Scholar 

  5. Randen T, Husøy JH (1999) Filtering for texture classification: a comparative study. IEEE Trans Pattern Anal Mach Intell 21(4):291–310

    Article  Google Scholar 

  6. Panjwani DK, Healey G (1995) Markov random field models for unsupervised segmentation of textured color images. IEEE Trans Pattern Anal Mach Intell 17(10):939–954

    Article  Google Scholar 

  7. Manjunath BS, Ma WY (1996) Texture features for browsing and retrieval of image data. IEEE Trans Pattern Anal Mach Intell 18(8):837–842

    Article  Google Scholar 

  8. Clerc M, Mallat S (2002) The texture gradient equation for recovering shape from texture. IEEE Trans Pattern Anal Mach Intell 24(4):536–549

    Article  Google Scholar 

  9. Singh M, Singh S (2002) Spatial texture analysis: a comparative study. In: Proceedings of the 15th international conference on pattern recognition (ICPR’02), vol 1, pp 676–679

  10. Tuceryan M, Jain AK (1993) Texture analysis. Handbook pattern recognition and computer vision, chap 2. In: Chen CH, Pau LF, Wang PSP (eds) World Scientific, Singapore, pp 235–276

  11. Weszka JS, Dyer CR, Rosenfeld A (1976) A comparative study of texture measures for terrain classification. IEEE Trans Syst Man Cybern SMC 6(4):269–285

    MATH  Google Scholar 

  12. Jones DJ, Jackway PT (2000) Granolds: a novel texture representation. Pattern Recognit 33(6):1033–1045

    Article  Google Scholar 

  13. Sivakumar K, Goutsias J (1999) Morphologically constrained GRFS: applications to texture synthesis and analysis. IEEE Trans Pattern Anal Mach Intell 21(2):99–113

    Article  Google Scholar 

  14. Rosenfeld A, Thurston M (1971) Edge and curve detection for visual scene analysis. IEEE Trans Comput C-20:562–569

    Article  Google Scholar 

  15. Haralick RM, Shanmugam K, Dinstein I (1973) Textural features for image classification. IEEE Trans Syst Man Cybern SMC 3(6):610–621

    Article  Google Scholar 

  16. Conners RW, Harlow CA (1980) A theoretical comparison of texture algorithms. IEEE Trans Pattern Anal Mach Intell 2(3):204–222

    MATH  Google Scholar 

  17. Murino V, Ottonello C, Pagnan S (1998) Noisy texture classification: a higher order statistics approach. Pattern Recognit 34(4):383–393

    Article  Google Scholar 

  18. Liu XW, Wang DL (2003) Texture classification using spectral histograms. IEEE Trans Image Process 12(6):661–670

    Article  Google Scholar 

  19. Kaplan LM (1999) Extended fractal analysis for texture classification and segmentation. IEEE Trans Image Process 8(11):1572–1585

    Article  Google Scholar 

  20. Krishnamachari S, Chellappa R (1997) Multiresolution gauss-markov random field models for texture segmentation. IEEE Trans Image Process 6(2):251–267

    Article  Google Scholar 

  21. Cross G, Jain A (1983) Markov random field texture models. IEEE Trans Pattern Anal Mach Intell 5(1):25–39

    Google Scholar 

  22. Bennett J, Khotanzad A (1998) Modeling textured image using generalized long correlation models. IEEE Trans Pattern Anal Mach Intell 20(12):1365–1370

    Article  Google Scholar 

  23. Garcia P, Petrou M, Kamata S (1999) The use of Boolean model for texture analysis of grey images. Comput Vis Image Underst 74(3):227–235

    Article  Google Scholar 

  24. Laws KI (1980) Rapid texture identification. In: Proceedings of the SPIE conference image processing for missile guidance, pp 376–380

  25. Jain AK, Farrokhnia F (1991) Unsupervised texture segmentation using Gabor filters. Pattern Recognit 24(12):1167–1186

    Article  Google Scholar 

  26. Azencott R, Wang JP, Younes L (1997) Texture classification using windowed fourier filters. IEEE Trans Pattern Anal Mach Intell 19(2):148–153

    Article  Google Scholar 

  27. Arivazhagan S, Ganesan L (2003) Texture classification using wavelet transform. Pattern Recognit Lett 24(9–10):1513–1521

    Article  MATH  Google Scholar 

  28. Pun C-M, Lee M-C (2003) Log-polar wavelet energy signatures for rotation and scale invariant texture classification. IEEE Trans Pattern Anal Mach Intell 25(5):590–603

    Article  Google Scholar 

  29. Unser M (1995) Texture classification and segmentation using wavelet frames. IEEE Trans Image Process 4:1549–1560

    Article  Google Scholar 

  30. Mojsilovic A, Popovic MV, Rackov DM (2000) On the selection of an optimal wavelet basis for texture classification. IEEE Trans Image Process 9(12):2043–2050

    Article  MATH  MathSciNet  Google Scholar 

  31. Chen YQ, Nixon MS, Thomas DW (1995) Statistical geometrical features for texture classification. Pattern Recognit 28(4):537–552

    Article  Google Scholar 

  32. Brodatz P (1966) Textures: a photographic album for artists and designers. Dover, Paris. http://www.ux.his.no/∼tranden/brodatz.html

  33. Picard R (1995) Chris Graczyk, Steve Mann, Josh Wachman, Len Picard, and Lee Campbell. Vistex. via http://ftp:whitechapel.media.mit.edu. Copyright 1995 Massachusetts Institute of Technology

  34. Duda RO, Hart PE, Stork DG (2001) Pattern classification, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  35. Devijver PA, Kittler J (1982) Pattern recognition: a statistical approach. Prentice Hall International, Eagle Cliffs

    MATH  Google Scholar 

  36. Fukunaga K, Hostetler LD (1973). Optimization of k-nearest-neighbor density estimates. IEEE Trans Inform Theory IT-19:320–326

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research work presented in this paper is supported by National Natural Science Foundation of China, Grant No. 60275010, and Science and Technology Commission of Shanghai Municipality, Grant No. 04JC14014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Qiu Chen.

Appendix

Appendix

Fig. 7
figure 7

Brodatz texture set. From left to right, top to bottom: D1, D2, ..., D112

Fig. 8
figure 8

Some nonhomogeneous images in the Brodatz texture set. From left to right: D7, D42, D43, D44, D45, D58, D59, D62, D69, D72, D90 and D91

Table 4 Detailed classification error listing for kNN (k=1) of different methods in Table 2

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, C.L., Chen, Y.Q. Classifying image texture with statistical landscape features. Pattern Anal Applic 8, 321–331 (2006). https://doi.org/10.1007/s10044-005-0014-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-005-0014-6

Keywords

Navigation