Skip to main content
Log in

Rotation invariant feature extraction using Ridgelet and Fourier transforms

  • Theoretical Advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

In this paper, we present a novel descriptor for feature extraction by using a combination of Ridgelets and Fourier transform. We have successfully implemented ridgelets on the circular disk containing the pattern and applied Fourier transform on the resulting ridgelet coefficients to extract rotation-invariant features for pattern recognition. The descriptor is very robust to Gaussian noise even when the noise level is high. Experimental results show that the new descriptor is a very good choice for pattern recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Burkhardt H, Siggelkow S (2001) Invariant features in pattern recognition—fundamentals and applications. In: Kotropoulos C, Pitas I (eds) Nonlinear model-based image/video processing and analysis, Wiley, New York, pp 269–307

  2. Trier OD, Jain AK, Taxt T (1996) Feature extraction methods for character recognition: a survey. Pattern Recognit 29(4):641–662

    Article  Google Scholar 

  3. Schaffalitzky F, Zisserman A (2002) Multi-view matching for unordered image sets, or how do i organize my hoiliday snaps? In: 7th European conference on computer vision, Copenhagen, Denmark, May 28–31, pp 414–431

  4. Mikolajczk K, Schmid C (2003) A performance evaluation of local descriptors. In: IEEE international conference on computer vision and pattern recognition, Vol. II, Madison, Wisconsin, USA, pp 257–263

  5. Van Gool L, Tuytelaars T, Turina A (2001) Local features for image retrieval. In: Veltkamp RC, Burkhardt H, Kriegel H-P (eds) State-of-the-art in content-based image and video retrieval. Kluwer, Dordrecht, pp 21–41

  6. Lowe DG (2001) Local feature view clustering for 3D object recognition. In: IEEE conference on computer vision and pattern recognition. Kauai, Hawaii, pp 682–688

  7. Lowe DG (1999) Object recognition from local scale-invariant features. In: International conference on computer vision. Corfu, Greece, pp 1150–1157

  8. Hu M (1962) Visual pattern recognition by moment invariants. IRE Trans Inf Theory (8):179–187

  9. Li Y (1992) Reforming the theory of invariant moments for pattern recognition. Pattern Recognit 25:723–730

    Article  Google Scholar 

  10. Reddi S (1981) Radial and angular moment invariants for image identification. IEEE Trans Pattern Anal Mach Intell (3):240–242

  11. Teague M (1980) Image analysis via the general theory of moments. J Opt Soc Am 70:920–930

    MathSciNet  Google Scholar 

  12. Teh CH, Chin RT (1988) On image analysis by the methods of moments. IEEE Trans PAMI 10:496–513

    MATH  Google Scholar 

  13. Khotanzad A, Hong YH (1990) Rotation invariant image recognition using features selected via a systematic method. Pattern Recognit 23(10):1089–1101

    Article  Google Scholar 

  14. Shen D, Ip HHS (1999) Descriminative wavelet shape descriptors for recognition of 2-D patterns. Pattern Recognit 32:151–165

    Article  Google Scholar 

  15. Yap PT, Paramesran R, Ong SH (2003) Image analysis by Krawtchouk moments. IEEE Trans Image Process 12(11):1367–1377

    Article  MathSciNet  Google Scholar 

  16. Mukundan R, Ong SH, Lee PA (2001) Image analysis by Tchebichef moments. IEEE Trans Image Process 10(9):1357–1364

    Article  MATH  MathSciNet  Google Scholar 

  17. Mukundan R (2004) Some computational aspects of discrete orthonormal moments. IEEE Trans Image Process 13(8):1055–1059

    Article  PubMed  MathSciNet  Google Scholar 

  18. Liao SX, Pawlak M (1996) On image analysis by moments. IEEE Trans Pattern Anal Mach Intell 18(3):254–266

    Article  Google Scholar 

  19. Mukundan R, Ramakrishan KR (1998) Moment functions in image analysis: theory and applications. World Scientific Publishing

  20. Anh VV, Tieng Q, Bui TD, Chen GY (1997) The Hellinger-Kakutani metric for pattern recognition. In: Proceedings of IEEE international conference on image processing (ICIP’97), vol. II, pp 430–433

  21. Granlund GH (1972) Fourier processing for handwritten character recognition. IEEE Trans Comput C-21(3):195–201

    MathSciNet  Google Scholar 

  22. Lin CC, Chellappa R (1987) Classification of partial 2-D shapes using Fourier descriptors. IEEE Trans Pattern Anal Mach Intell 9(5):686–690

    Article  Google Scholar 

  23. Wang SS, Chen PC, Lin WG (1994) Invariant pattern recognition by moment Fourier descriptor. Pattern Recognit 27(12):1735–1742

    Article  Google Scholar 

  24. Zahn CT, Roskies RZ (1972) Fourier descriptors for plane closed curves. IEEE Trans Comput C-21(3):269–281

    MathSciNet  Google Scholar 

  25. Kuhl FP, Giardina CR (1982) Elliptic Fourier features of a closed contour. Comput Graph Image Process 18(3):236–258

    Article  Google Scholar 

  26. Lin CS, Hwang C-L (1987) New forms of shape invariants from elliptic Fourier descriptor. Pattern Recognit 20(5):535–545

    Article  Google Scholar 

  27. Bui TD, Chen GY, Feng L (2001) An orthonormal-Shell-Fourier descriptor for rapid matching of patterns in image database. Int J Pattern Recognit Artif Intell 15(8):1213–1229

    Article  Google Scholar 

  28. Chen GY, Bui TD (1999) Invariant Fourier-wavelet descriptor for pattern recognition. Pattern Recognit 32(7):1083–1088

    Article  Google Scholar 

  29. Lee S-W, Kim C-H, Ma H, Tang YY (1996) Multiresolution recognition of unconstrained handwritten numerals with wavelet transform and multilayer cluster neural network. Pattern Recognit 29(12):1953–1961

    Article  Google Scholar 

  30. Wunsch P, Laine AF (1995) Wavelet descriptors for multiresolution recognition of handprinted characters. Pattern Recognit 28(8):1237–1249

    Article  Google Scholar 

  31. Chen GY, Bui TD, Krzyżak A (2003) Contour-based handwritten numeral recognition using multiwavelets and neural networks. Pattern Recognit 36(7):1597–1604

    Article  MATH  Google Scholar 

  32. Khalil MI, Bayoumi MM (2000) Invariant 2D object recognition using the wavelet modulus maxima. Pattern Recognit Lett 21(9):863–872

    Article  Google Scholar 

  33. Tieng QT, Boles WW (1997) Recognition of 2D object contours using wavelet transform zero-crossing representation. IEEE Trans Pattern Anal Mach Intell 19(8):910–916

    Article  Google Scholar 

  34. Tao Y, Lam ECM, Tang YY (2001) Feature extraction using wavelet and fractal. Pattern Recognit Lett 22(3–4):271–287

    Article  MATH  Google Scholar 

  35. Tieng QM, Boles WW (1995) An application of wavelet based affine-invariant representation. Pattern Recognit Lett 16(12):1287–1296

    Article  Google Scholar 

  36. Tieng QM, Boles WW (1997) Wavelet-based affine invariant representation: a tool for recognizing planar objects in 3D space. IEEE Trans Pattern Anal Mach Intell 19(8):846–857

    Article  Google Scholar 

  37. Donoho DL, Flesia AG (2001) Digital ridgelet transform based on true ridge functions. In: Stoecker J, Welland GV (eds) Beyond wavelets. Academic, New York

  38. Starck JL, Candes EJ, Donoho DL (2003) Astronomical image representation by the curvelet transform. Astron Astrophys 398(2):785–800

    Article  Google Scholar 

  39. Starck JL, Candes EJ, Donoho DL (2002) The curvelet transform for image denoising. IEEE Trans Image Process 11(6):670–684

    Article  MathSciNet  Google Scholar 

  40. Starck JL, Nguyen MK, Murtagh F (2003) Wavelets and curvelets for image deconvolution: a combined approach. Signal Process 83(10):2279–2283

    Article  MATH  Google Scholar 

  41. Starck J-L, Murtagh F, Candes E, Donoho DL (2003) Gray and color image contrast enhancement by the curvelet transform. IEEE Trans Image Process 12(6):706–717

    Article  MathSciNet  Google Scholar 

  42. Flesia AG, Hel-Or H, Averbuch A, Candes EJ, Coifman RR, Donoho DL (2001) Digital implementation of ridgelet packets. In: Stoeckler J, Welland GV (eds) Beyond wavelets. Academic, New York

  43. Candes EJ (1999) Ridgelets and the representation of mutilated Sobolev functions. SIAM J Math Anal 33(2):2495–2509

    MathSciNet  Google Scholar 

  44. Candes EJ, Donoho DL (1999) Ridgelets: a key to higher-dimensional intermittency? Philos Trans R Soc Lond A 357(1760):2495–2509

    Article  MATH  MathSciNet  Google Scholar 

  45. Candes EJ (1998) Ridgelets: theory and applications. Ph.D. Thesis, Technical Report, Department of Statistics, Stanford University

  46. Do MN, Vetterli M (2003) The finite ridgelet transform for image representation. IEEE Trans Image Process 12(1):16–28

    Article  MathSciNet  Google Scholar 

  47. Lindeberg T (1998) Feature detection with automatic scale selection. Int J Comput Vis 30(2):77–116

    Google Scholar 

  48. Brunnstrom K, Eklundh JO, Lindeberg T (1990) On scale and resolution in active analysis of local image structure. Image Vis Comput 8(4):289–296

    Article  Google Scholar 

  49. Lindeberg T (1994) Scale-space theory in computer vision. Kluwer, Dordrecht

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers and the Associate Editor whose constructive comments and suggestions have improved the quality of the paper. This work was supported by research grants from the Natural Sciences and Engineering Research Council of Canada (NSERC) and by the Fonds Quebecois de la Recherche sur la Nature et les Technologies (FQRNT) of Quebec.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Y. Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, G.Y., Bui, T.D. & Krzyżak, A. Rotation invariant feature extraction using Ridgelet and Fourier transforms. Pattern Anal Applic 9, 83–93 (2006). https://doi.org/10.1007/s10044-006-0028-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-006-0028-8

Keywords

Navigation