Skip to main content
Log in

Diagnosis of lung nodule using Moran’s index and Geary’s coefficient in computerized tomography images

  • Theoretical Advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

This paper analyzes the application of Moran’s index and Geary’s coefficient to the characterization of lung nodules as malignant or benign in computerized tomography images. The characterization method is based on a process that verifies which combination of measures, from the proposed measures, has been best able to discriminate between the benign and malignant nodules using stepwise discriminant analysis. Then, a linear discriminant analysis procedure was performed using the selected features to evaluate the ability of these in predicting the classification for each nodule. In order to verify this application we also describe tests that were carried out using a sample of 36 nodules: 29 benign and 7 malignant. A leave-one-out procedure was used to provide a less biased estimate of the linear discriminator’s performance. The two analyzed functions and its combinations have provided above 90% of accuracy and a value area under receiver operation characteristic (ROC) curve above 0.85, that indicates a promising potential to be used as nodules signature measures. The preliminary results of this approach are very encouraging in characterizing nodules using the two functions presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Anselin L (2001) Computing enviroments for spatial data analysis. J Geogr Syst 2:201–220

    Article  Google Scholar 

  2. Anselin L, Kim Y, Syabri I (2004) Web-based analytical tools for the exploration of spatial data. J Geogr Syst 6:197–218

    Article  Google Scholar 

  3. Arimura H, Katsuragawa S, Suzuki K, Li F, Shiraishi J, Sone S, Doi K (2004) Computerized scheme for automated detection of lung nodules in low-dose CT images for lung cancer screening. Acad Radiol 11:617–629

    Article  Google Scholar 

  4. Armato SG III, Giger ML, Moran CJ, Blackburn JT, Doi K, MacMahon H (1999) Computerized detection of pulmonary nodules on CT scans. Radiographics 19(5):1303–1311

    Google Scholar 

  5. Armato SG III, Li F, Giger ML, MacMahon H, Sone S, Doi K (2002) Lung cancer: Performance of automated lung nodule detection applied to cancers missed in a CT screening program. Radiology 225:685–692

    Article  Google Scholar 

  6. Brown MS, Goldin JG, Suh RD, McNitt-Gray MF, Sayre JW, Aberle DR (2003) Lung micronodules: automated method for detection at thin-section CT-initial experience 1. Radiology 226:256–262

    Article  Google Scholar 

  7. Chica-Olmo M, Abarca-Hernandez F (2000) Computing geostatistical image texture for remotely sensed data classification. Comput Geosci 26:373–383

    Article  Google Scholar 

  8. Clark I (1979) Practical geostatistics. Applied Sience, London

    Google Scholar 

  9. Clunie DA (2000) DICOM structered reporting. PixelMed, Pennsylvania

    Google Scholar 

  10. Dehmeshki J, Ye X, Valdivieso M, Roddie M, Costello J (2003) Shape based region growing using derivatives of 3D medical images: application to automatic detection of pulmonary nodules. Image and Signal Processing and Analysis, 2:1118–1123 vol 2, September 2003. ISPA 2003. Proceedings of the 3rd International Symposium

    Google Scholar 

  11. Ferreyra RA, Apezteguia HP, Sereno R, Jones JW (2002) Reduction of soil water spatial sampling density using scaled semivariograms and simulated annealing. Geoderma 110:265–289

    Article  Google Scholar 

  12. Fortin M, Drapeau P, Legendre P (1989) Spatial autocorrelation and sampling design in plant ecology. Plant Ecol 83(1–2):209–222

    Article  Google Scholar 

  13. Fukunaga K (1990) Introduction to statistical pattern recognition, 2nd edn. Academic, London

    MATH  Google Scholar 

  14. Gonzalez RC, Woods RE (1992) Digital image processing, 3rd edn. Addison-Wesley, Reading

    Google Scholar 

  15. Goodin DG, Gao J, Henebry GM (2004) The effect of solar illumination angle and sensor view angle on observed patterns of spatial structure in tallgrass prairie. IEEE Trans Geosci Remote Sens 42(1):154–165

    Article  Google Scholar 

  16. Gould MK (2003) Cost-effectiveness of alternative management strategies for patients with solitary pulmonary nodules. Ann Intern Med 9(138):724–735

    Google Scholar 

  17. Greinera M, Pfeifferb D, Smithc RD (2000) Principles and practical application of the receiver-operating characteristic analysis for diagnostic tests. Prev Vet Med 45:23–41

    Article  Google Scholar 

  18. Griffith DA (2004) Distributional properties of georeferenced random variables based on the eigenfunction spatial filter. J Geogr Syst 6:263–288

    Article  Google Scholar 

  19. Hashimoto Y, Tsujikawa T, Kando C, Maki M, Mamore M, Nagai A, Ohnuki T, Nishikawa T, Kusakabe K (2006) Accuracy of PET diagnosis of solid pulmonary lesions with 18 F-FDG de 2,5. J Nucl Med 47 (3):426–31

    Google Scholar 

  20. INCA (2003) Estimativas da incidência e mortalidade por câncer no Brasil. Available in: http://www.inca.gov.br/estimativas/2003/versaofinal.pdf

  21. Jeong YJ, Lee KS, Jeong SY, Chung MJ, Shim SS, Kim H, Kwon OJ, Kim S (2005) Solitary pulmonary nodule: characterization with combine wash-in and washout features of dynamic multidector row CT. Radiology 2(237):675–683

    Article  Google Scholar 

  22. Johnson WH (2000) Exploratory use of spatial statistics to inform the choice of variables for stratifying non-self representing cities for the next CPI PSU sample selection. Available at http://www.amstat.org/sections/srms/Proceedings/papers/2000_043.pdf

  23. Journel AG, Huijbregts CHJ (1978) Mining geostatistics. Academic, London

    Google Scholar 

  24. Kawata Y, Niki N, Ohmatsu H, Kakinuma R, Eguchi K, Kaneko M, Moriyama N (1997) Classification of pulmonary nodules in thin-section CT images based on shape characterization. In: International conference on image processing, vol 3, pp 528–530. IEEE Computer Society Press

  25. Kovalev VA, Kruggel F, Gertz H-J, Yves Von Cramon D (2001) Three-dimensional texture analysis of MRI brain datasets. IEEE Trans Med Imaging 20(5):424–433

    Article  Google Scholar 

  26. Lachenbruch PA (1975) Discriminant analysis. Hafner, New York

    MATH  Google Scholar 

  27. Lag R (2005) Seer cancer statistics review, 1975–2002. Technical report, National Cancer Institute, Bethesda 2002. Available at http://seer.cancer.gov/csr/1975_2002/, based on November 2004 SEER data submission, posted to the SEER web site

  28. Levine N (2004) CrimeStat III: A spatial statistics program for the analysis of crime incident locations (version 3.0). Ned Levine & Associates/National Institute of Justice, Houston/Washington, DC

  29. Li X (2001) Texture analysis for optical coherence tomography image. Master’s thesis, The University of Arizona

  30. Lead Technologies (2003) SPSS 11.0 for windows. Available at http://www.spss.com

  31. Metz CE (2003) ROCKIT software. Available at http://www-radiology.uchicago.edu/krl/toppage11.htm

  32. Meyer-Baese A (2003) Pattern recognition for medical imaging. Elsevier, Amsterdam

  33. Mudigonda NR, Rangayyan RM, Leo Desautels JE (2000) Gradient and texture analysis for the classification of mammographic masses. IEEE Trans Med Imaging 19(10):1032–1043

    Article  Google Scholar 

  34. Mark RT, Dixon DP, Fortin M-J, Legendre P, Myers DE, Rosenberg MS (2002) Conceptual and mathematical relationships among methods for spatial analysis. Ecography 25:558–577

    Article  Google Scholar 

  35. Nakamura Y, Fukano G, Takizawa H, Mizuno S, Yamamoto S, Matsumoto T, Tateno Y, Iinuma T (2004) Eigen nodule: view-based recognition of lung nodule in chest x-ray CT images using subspace method. Pattern Recognition, 4:681–684 ICPR 2004. Proceedings of the 17th international conference on publication

    Google Scholar 

  36. Nikolaidis N, Pitas I (2001) 3-D image processing algorithms. Wiley, New York

    Google Scholar 

  37. Ost D, Fein AM, Feinsilver SH (2003) The solitary pulmonary nodule. N Engl J Med 25(348):2535–2542

    Article  Google Scholar 

  38. Páez A, Scott DM (2004) Spatial statistics for urban analysis: A review of techniques with examples. Geo J 2004:53–67

    Google Scholar 

  39. Pepe G, Rosseti C, Sironi S, Landoni G, Gianoli L, Pastorino U, Zannini P, Mezzetti M, Grimaldi A, Galli L, Messa C, Fazio F (2005) Patients with known or suspected lung cancer: evaluation of clinical management changes due to 18 F-deoxyglucose positron emission tomography (18 F-FDG PET) study. Nucl Med Commun 9(26):831–837

    Article  Google Scholar 

  40. Rosenberg MS, Sokal RR, Oden NL, DiGiovanni D (1999) Spatial autocorrelation of cancer in western Europe. Eur J Epidemiol 15(1):15–22

    Article  Google Scholar 

  41. Schrump DS, Altorki NK, Henschke CL, Carter D, Turrisi AT Gutierrez ME Non-Small Cell Lung Cancer. In: De Vita VT, Hellman S, Rosenberg SA (eds) Cancer, principles and practice of Oncology, 6th edn. Lippincott Williams and Wilkins, Philadelphia pp 753–810

  42. Sergiacomi G, Schiallaci O, Leporace M, Lavini F, Danieli CM, Simonetti G (2006) Integrated multislice CT and Tc-99 m sestamibi spect-CT-evaluation of solitary pulmonary nodule. Radiol Med 111(2):213–24

    Article  Google Scholar 

  43. Shah S, McNitt-Gray M, Rogers S, Goldin J, Suh R, Sayre J, Petkovska I, Kim H, Aberle D (2005) Computer aided characterization of the solitary pulmonary nodule using volumetric and contrast enhancement features. Acad Radiol 12(10):1310–1319

    Article  Google Scholar 

  44. Shimada T (2002) Global Moran’s I and small distance adjustment: spatial pattern of crime in Tokyo. National Research Institute of Police Science, National Police Agency, Chiba Available at http://www.icpsr.umich.edu/CRIMESTAT/files/CrimeStatChapter.4.pdf

  45. Silva AC, Carvalho PCP (2002) Sistema de análise de nódulo pulmonar. In II Workshop de Informática aplicada a Saúde. Itajai, Agosto Universidade de Itajai. Available at http://www.cbcomp.univali.br/pdf/2002/wsp035.pdf

  46. Silva AC, Pinto Carvalho PC, Gattass M (2004) Analysis of spatial variability using geostatistical functions for diagnosis of lung nodule in computerized tomography images. Pattern Anal Appl 7(3):227 – 234

    MathSciNet  Google Scholar 

  47. Su H, Qian W, Sankar R, Sun X (2004) A new knowledge-based lung nodule detection system. Acoustics, Speech, and Signal Processing. 5:V–445-8 vol 5, May 2004. Proceedings. (ICASSP ’04). IEEE International Conference

  48. Swensen SJ (1997) The probability of malignancy in solitary nodules. application to small radiologically indeterminate nodules. Arch Intern Med 8(157):849–855

    Article  Google Scholar 

  49. Tarantino AB (1997) Chapter 38. Nódulo Solitário Do Pulmão, 4th edn. Guanabara Koogan, Rio de Janeiro, pp 733–753

  50. Wormanns D, Fiebich M, Saidi M, Diederich S, Heindel W (2002) Automatic detection of pulmonary nodules at spiral CT: clinical application of a computer-aided diagnosis system. Eur Radiol 12(5):1052–1057

    Article  Google Scholar 

  51. Yi CA, Lee KS, Kim BT, Choi JY, Kwon OJ, Kim H, Shim YM, Chung MJ (2006) Tissue characterization of solitary pulmonary nodule: comparative study between helical dynamic CT and integrated PET/CT. J Nucl Med 47(3):443–50

    Google Scholar 

Download references

Acknowledgments

We would like to thank CNPQ (process 506624/2004-8) and CAPES (process 0044/05-9) for the financial support, the staff from Instituto Fernandes Figueira, particularly Dr. Marcia Cristina Bastos Boechat, for the images provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erick Corrêa da Silva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

da Silva, E.C., Silva, A.C., de Paiva, A.C. et al. Diagnosis of lung nodule using Moran’s index and Geary’s coefficient in computerized tomography images. Pattern Anal Applic 11, 89–99 (2008). https://doi.org/10.1007/s10044-007-0081-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-007-0081-y

Keywords

Navigation