Skip to main content
Log in

Combined invariants to blur and rotation using Zernike moment descriptors

  • Theoretical Advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

Moment invariants that are not affected by geometric transform have been utilized as pattern features in a number of applications. But in most cases, images are processed subject to blur degradations. The traditional blur invariant sets were constructed using geometric moments, central moments or complex moments. However, these non-orthogonal moments are generally considered as a disadvantage over orthogonal moments, such as Zernike, pseudo-Zernike, and Legendre moments, in decreasing information redundancy and sensitivity to noises. To solve this problem, this paper addresses a method for recognizing objects in an image in a way that is invariant to images’ blur and rotation transformations to improve the robustness to noises. The proposed method is based on Zernike descriptors which are orthogonal over a unit circle, and is invariant to a central symmetric blur, such as linear motion or out-of-focus blur. We present a mathematical framework of obtaining the Zernike moments of blurred images, and a framework of deriving the combined blur and rotation invariants. The classification experimental results are presented to confirm the proposed method outperforms other similar ones in the presence of various blur-degraded and rotation-transformed images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang X, Xiao B, Ma JF, Bi XL (2007) Scaling and rotation invariant analysis approach to object recognition based on Radon and Fourier–Mellin transforms. Pattern Recognit 40:3503–3508

    Article  MATH  Google Scholar 

  2. Heikkilä J (2004) Pattern matching with affine moment descriptors. Pattern Recognit 37:1825–1834

    Article  MATH  Google Scholar 

  3. Ping Z, Ren H, Zhou J, Sheng Y, Bo W (2007) Generic orthogonal moments: Jacobi–Fourier moments for invariant image description. Pattern Recognit 40:1245–1254

    Article  MATH  Google Scholar 

  4. Zhang F, Liu SQ, Wang DB, Guan W (2008) Aircraft recognition in infrared image using wavelet moment invariants, Image and Vision Computing (in press)

  5. Yang JC, Park DS (2008) A fingerprint verification algorithm using tessellated invariant moment features. Neurocomputing 71:1939–1946

    Article  Google Scholar 

  6. Yang CY, Chou JJ (2000) Classification of rotifers with machine vision by shape moment invariants. Aquac Eng 24:33–57

    Article  Google Scholar 

  7. Lin YH, Chen CH (2008) Template matching using the parametric template vector with translation, rotation and scale invariance. Pattern Recognit 41:2413–2421

    Article  MATH  Google Scholar 

  8. Hu MK (1962) Visual pattern recognition by moment invariants. IRE Trans Inf Theory 8:179–187

    Google Scholar 

  9. Reiss TH (1991) The revised fundamental theorem of moment invariants. IEEE Trans Pattern Anal Mach Intell 13:830–834

    Article  Google Scholar 

  10. Flusser J, Suk T (1993) Pattern recognition by affine moment invariants. Pattern Recognit 26(1):167–174

    Article  MathSciNet  Google Scholar 

  11. Flusser J, Suk T, Saic S (1996) Recognition of blurred images by the method of moments. IEEE Trans Image Process 5(3):533–538

    Article  Google Scholar 

  12. Banham MR, Katsaggelos AK (1997) Digital image restoration. IEEE Signal Process Mag 14(2):24–41

    Article  Google Scholar 

  13. Ojansivu V, Heikkilä J (2008) A method for blur and affine invariant object recognition using phase-only bispectrum. Springer, ICIAR, LNCS 5112, pp 527–536

  14. Flusser J, Suk T (1998) Degraded image analysis: an invariant approach. IEEE Trans Pattern Anal Mach Intell 20:590–603

    Article  Google Scholar 

  15. Flusser J, Zitová B (1999) Combined invariants to linear filtering and rotation. Int J Pattern Recognit Artif Intell 13:1123–1136

    Article  Google Scholar 

  16. Zhang Y, Wen C, Zhang Y, Soh YC (2002) Determination of blur and affine combined invariants by normalization. Pattern Recognit 35:211–221

    Article  MATH  Google Scholar 

  17. Flusser J, Suk T (2003) Combined blur and affine moment invariants and their use in pattern recognition. Pattern Recognit 36:2895–2907

    Article  MATH  Google Scholar 

  18. Liu J, Zhang T (2005) Recognition of the blurred image by complex moment invariants. Pattern Recognit Lett 26:1128–1138

    Article  Google Scholar 

  19. Ghorbel F, Derrode S, Mezhoud R, Bannour T, Dhahbi S (2006) Image reconstruction from a complete set of similarity invariants extracted from complex moments. Pattern Recognit Lett 27:1361–1369

    Article  Google Scholar 

  20. Mukundan R, Ramakrishnan KR (1998) Moment functions in image analysis—theory and applications. World Scientific, Singapore

    MATH  Google Scholar 

  21. Khotanzad A, Hong YH (1990) Invariant image recognition by Zernike moments. IEEE Trans Pattern Anal Mach Intell 12(5):489–497

    Article  Google Scholar 

  22. Butterfly database: http://museumvictoria.com.au/bioinformatics/butter/images/bthumbliv.htm

  23. MPEG7 CE Shape-1 Part B: http://www.imageprocessingplace.com/root_files_V3/image_ databases.htm

Download references

Acknowledgment

The authors would like to thank the anonymous referees for their helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongqing Zhu.

Appendices

Appendix A: Proof of Theorem 1

In this appendix, we detail a derivation of Theorem 1. According to (8), we obtain the following expression.

$$ \begin{aligned} \frac{\pi }{p + 1}Z_{pq}^{g} & = \sum\limits_{k = q}^{p} {B_{pqk} D_{kq}^{g} } \\ & = \sum\limits_{k = q}^{p} {B_{pqk} } \int\limits_{x} {\int\limits_{y} {(x - iy)^{(k + q)/2} (x + iy)^{(k - q)/2} g(x,y)\hbox{d}x\hbox{d}y} } \\ & = \sum\limits_{k = q}^{p} {B_{pqk} } \int\limits_{x} {\int\limits_{y} {(x - iy)^{(k + q)/2} (x + iy)^{(k - q)/2} } \left[ {\iint_{{R^{2} }} {h(a,b)f(x - a,y - b)dadb}} \right]} \hbox{d}x\hbox{d}y \\ & = \sum\limits_{k = q}^{p} {B_{pqk} } \iint_{{R^{2} }} {h(a,b)}\left[ {\int\limits_{x} {\int\limits_{y} {(x - iy)^{(k + q)/2} (x + iy)^{(k - q)/2} f(x - a,y - b)\hbox{d}x\hbox{d}y} } } \right]dadb \\ & = \sum\limits_{k = q}^{p} {B_{pqk} } \iint_{{R^{2} }} {h(a,b)\left[ {\int\limits_{x} {\int\limits_{y} {[(x + a) - i(y + b)]^{(k + q)/2} [(x + a) + i(y + b)]^{(k - q)/2} } } f(x,y)\hbox{d}x\hbox{d}y} \right]}dadb \\ & = \sum\limits_{k = q}^{p} {B_{pqk} } \iint_{{R^{2} }} {h(a,b)\left[ {\int\limits_{x} {\int\limits_{y} {\sum\limits_{m = 0}^{{\frac{k + q}{2}}} {\left( \begin{gathered} \frac{k + q}{2} \\ m \\ \end{gathered} \right)(x - iy)^{m} (a - ib)^{{\frac{k + q}{2} - m}} } \sum\limits_{n = 0}^{{\frac{k - q}{2}}} {\left( \begin{gathered} \frac{k - q}{2} \\ n \\ \end{gathered} \right)(x + iy)^{n} (a + ib)^{{\frac{k - q}{2} - n}} f(x,y)\hbox{d}x\hbox{d}y} } } } \right]dadb} \\ & = \sum\limits_{k = q}^{p} {\sum\limits_{m = 0}^{{\frac{k + q}{2}}} {\sum\limits_{n = 0}^{{\frac{k - q}{2}}} {\left( \begin{gathered} \frac{k + q}{2} \\ m \\ \end{gathered} \right)\left( \begin{gathered} \frac{k - q}{2} \\ n \\ \end{gathered} \right)} } B_{pqk} } \iint_{{R^{2} }} {(a - ib)^{{\frac{k + q}{2} - m}} (a + ib)^{{\frac{k - q}{2} - n}} h(a,b)dadb}\int\limits_{x} {\int\limits_{y} {(x - iy)^{m} (x + iy)^{n} f(x,y)\hbox{d}x\hbox{d}y} } \\ & = \sum\limits_{k = q}^{p} {\sum\limits_{m = 0}^{{\frac{k + q}{2}}} {\sum\limits_{n = 0}^{{\frac{k - q}{2}}} {\left( \begin{gathered} \frac{k + q}{2} \\ m \\ \end{gathered} \right)\left( \begin{gathered} \frac{k - q}{2} \\ n \\ \end{gathered} \right)} } B_{pqk} } D_{k - m - n,q - m + n}^{h} D_{m + n,m - n}^{f} \\ \end{aligned} $$
(15)

From (15) and (8), we can obtain the following expression of radial moments after blurring degradation.

$$ D_{pq}^{g} = \sum\limits_{m = 0}^{{\frac{p + q}{2}}} {\sum\limits_{n = 0}^{{\frac{p - q}{2}}} {\left( \begin{gathered} \frac{p + q}{2} \\ m \\ \end{gathered} \right)\left( \begin{gathered} \frac{p - q}{2} \\ n \\ \end{gathered} \right)} } D_{p - m - n,q - m + n}^{h} D_{m + n,m - n}^{f} $$
(16)

Appendix B: Proof of theorem 2

Proof of \( Z_{pp}^{g} = Z_{pp}^{f} \)

According to (15), if p = q, Zernike moments \( Z_{pq}^{g} \)of an image after Gaussian blurring becomes

$$ Z_{pp}^{g} = \frac{p + 1}{\pi }\sum\limits_{m = 0}^{p} {\left( \begin{gathered} p \hfill \\ m \hfill \\ \end{gathered} \right)B_{ppp} D_{p - m,p - m}^{h} D_{mm}^{f} } $$
(17)

From (7), we can obtain the radial moments in PSF form as

$$ \begin{aligned} D_{p - m,p - m}^{h} & = \int\limits_{x} {\int\limits_{y} {h(x,y)(x - iy)^{p - m} \hbox{d}x\hbox{d}y} } \\ & = \int\limits_{x} {\int\limits_{y} {h(x,y)} } \sum\limits_{t = 0}^{p - m} {\left( \begin{gathered} p - m \\ t \\ \end{gathered} \right)( - i)^{t} x^{p - m - t} y^{t} \hbox{d}x\hbox{d}y} \\ & = \sum\limits_{t = 0}^{p - m} {\left( \begin{gathered} p - m \\ t \\ \end{gathered} \right)( - i)^{t} } \int\limits_{x} {\int\limits_{y} {\frac{1}{{2\pi \sigma^{2} }}e^{{ - \frac{{x^{2} + y^{2} }}{{2\sigma^{2} }}}} x^{p - m - t} y^{t} \hbox{d}x\hbox{d}y} } \\ & = \sum\limits_{t = 0}^{p - m} {\left( \begin{gathered} p - m \\ t \\ \end{gathered} \right)( - i)^{t} g_{p - m - t} g_{t} } \\ \end{aligned} $$
(18)

where g i g j is the central moment of Gaussian PSF, according to the conclusion drawn by Flusser and Suk [14] and Liu and Zhang [18] we have

$$ g_{i} g_{j} = \int\limits_{ - \infty }^{ + \infty } {\int\limits_{ - \infty }^{ + \infty } {(x - 0)^{i} (y - 0)^{j} \frac{1}{{2\pi \sigma^{2} }}e^{{ - \frac{{x^{2} + y^{2} }}{{2\sigma^{2} }}}} \hbox{d}x\hbox{d}y} } $$
(19)

and

$$ g_{i} = \frac{1}{{\sqrt {2\pi } \sigma }}\int\limits_{ - \infty }^{ + \infty } {x^{i} e^{{ - \frac{{x^{2} }}{{2\sigma^{2} }}}} \hbox{d}x} = \left\{ \begin{gathered} 0\quad {\text{if }}i{\text{ is an odd number}} \hfill \\ 1.3 \ldots (i - 1)\sigma^{i} \quad {\text{if }}i{\text{ is an even number}} \hfill \\ \end{gathered} \right. $$
(20)

Then, from (1820) we have the following conclusions:

  1. (1)

    If p − m is odd, whether t is odd or even, \( D_{p - m,p - m}^{h} = 0 \).

  2. (2)

    If p − m is even and t is odd, \( D_{p - m,p - m}^{h} = 0 \).

  3. (3)

    If p − m is even and t is even

Let t = 2k, then

$$ \begin{aligned} D_{p - m,p - m}^{h} & = \sum\limits_{k = 0}^{(p - m)/2} {\left( \begin{aligned} p - m \\ 2k \\ \end{aligned} \right)( - i)^{2k} g_{p - m - 2k} g_{2k} } \\ & = \sum\limits_{k = 0}^{(p - m)/2} {\left( \begin{aligned} p - m \\ 2k \\ \end{aligned} \right)( - 1)^{k} g_{p - m - 2k} g_{2k} } \\ \end{aligned} $$
(21)

where

$$ g_{2k} = 1 \cdot 3 \cdot 5 \cdots (2k - 1)\sigma^{2k} = \frac{(2k)!}{{2^{k} k!}}\sigma^{2k} $$
(22)
$$ g_{p - m - 2k} = \frac{(p - m - 2k)!}{{2^{{\frac{p - m}{2} - k}} \left( {\frac{p - m}{2} - k} \right)!}}\sigma^{p - m - 2k} $$
(23)

Substitute (22) and (23) into (21), we get

$$ \begin{aligned} D_{p - m,p - m}^{h} & = \sum\limits_{k = 0}^{(p - m)/2} {\frac{{( - 1)^{k} (p - m)!}}{(2k)!(p - m - 2k)!}\frac{(2k)!}{{2^{k} k!}}\frac{(p - m - 2k)!}{{2^{{\frac{p - m}{2} - k}} (\frac{p - m}{2} - k)!}}\sigma^{2k} \sigma^{p - m - 2k} } \\ & = \sigma^{p - m} \frac{(p - m)!}{{2^{{\frac{p - m}{2}}} \left( {\frac{p - m}{2}} \right)!}}\sum\limits_{k = 0}^{(p - m)/2} {\left( \begin{gathered} (p - m)/2 \\ k \\ \end{gathered} \right)} ( - 1)^{k} (1)^{{\left( {\frac{p - m}{2} - k} \right)}} \\ & = \sigma^{p - m} \frac{(p - m)!}{{2^{{\frac{p - m}{2}}} \left( {\frac{p - m}{2}} \right)!}}( - 1 + 1)^{{\frac{p - m}{2}}} = 0 \\ \end{aligned} $$

Due to the fact that imaging system is energy preserving, i.e.,\( \iint_{{R^{2} }} {h(x,y)\hbox{d}x\hbox{d}y = 1} \), thus, we have

$$ Z_{00}^{h} = \frac{1}{\pi }B_{000} D_{00}^{h} = \frac{1}{\pi } $$
(24)

While p = q, \( p \ne m \),\( D_{p - m,p - m}^{h} = 0 \). Substituting \( D_{p - m,p - m}^{h} = 0 \) into (17), we get

$$ \begin{aligned} Z_{pp}^{g} & = \frac{p + 1}{\pi }\left( \begin{gathered} p \hfill \\ p \hfill \\ \end{gathered} \right)B_{ppp} D_{00}^{h} D_{pp}^{f} \\ & = \frac{p + 1}{\pi }D_{pp}^{f} \\ & = Z_{pp}^{f} \\ \end{aligned} $$
(25)

Therefore, when p = q, and \( Z_{pp}^{g} = Z_{pp}^{f} \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, H., Liu, M., Ji, H. et al. Combined invariants to blur and rotation using Zernike moment descriptors. Pattern Anal Applic 13, 309–319 (2010). https://doi.org/10.1007/s10044-009-0159-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-009-0159-9

Keywords

Navigation