Skip to main content
Log in

A variant of Rotation Forest for constructing ensemble classifiers

  • Theoretical Advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

Rotation Forest, an effective ensemble classifier generation technique, works by using principal component analysis (PCA) to rotate the original feature axes so that different training sets for learning base classifiers can be formed. This paper presents a variant of Rotation Forest, which can be viewed as a combination of Bagging and Rotation Forest. Bagging is used here to inject more randomness into Rotation Forest in order to increase the diversity among the ensemble membership. The experiments conducted with 33 benchmark classification data sets available from the UCI repository, among which a classification tree is adopted as the base learning algorithm, demonstrate that the proposed method generally produces ensemble classifiers with lower error than Bagging, AdaBoost and Rotation Forest. The bias–variance analysis of error performance shows that the proposed method improves the prediction error of a single classifier by reducing much more variance term than the other considered ensemble procedures. Furthermore, the results computed on the data sets with artificial classification noise indicate that the new method is more robust to noise and kappa-error diagrams are employed to investigate the diversity–accuracy patterns of the ensemble classifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Breiman L (1996) Bagging predictors. Mach Learn 24(2):123–140

    MATH  MathSciNet  Google Scholar 

  2. Freund Y, Schapire RE (1996) Experiments with a new boosting algorithm. In: Proceedings of the 13th international conference on machine learning, Bari, Italy. Morgan Kaufmann, San Franciso, pp 148–156

  3. Leblanc M, Tibshirani R (1996) Combining estimates in regression and classification. J Am Statist Assoc 91(436):1641–1650

    Article  MATH  MathSciNet  Google Scholar 

  4. Freund Y, Schapire RE (1997) A decision-theoretic generalization of on-line learning and an application to boosting. J Comput System Sci 55(1):119–139

    Article  MATH  MathSciNet  Google Scholar 

  5. Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  MATH  Google Scholar 

  6. Latinne P, Debeir O, Decaestecker C (2002) Combining different methods and number of weak decision trees. Pattern Anal Appl 5(2):201–209

    Article  MATH  MathSciNet  Google Scholar 

  7. Skurichina M, Duin RPW (2002) Bagging, boosting and the random subspace method for linear classifiers. Pattern Anal Appl 5(2):121–135

    Article  MATH  MathSciNet  Google Scholar 

  8. Tumer K, Oza NC (2003) Input decimated ensembles. Pattern Anal Appl 6(1):65–77

    Article  MATH  MathSciNet  Google Scholar 

  9. Atınçay H (2004) Optimal resampling and classifier prototype selection in classifier ensembles using genetic algorithms. Pattern Anal Appl 7(3):285–295

    MathSciNet  Google Scholar 

  10. Atınçay H (2005) A dempster-shafter theoretic framework for boosting based ensemble design. Pattern Anal Appl 8(3):287–302

    Article  MathSciNet  Google Scholar 

  11. Masip D, Kuncheva LI, Vitrià (2005) An ensemble-based method for linear feature extraction for two-class problems. Pattern Anal Appl 8(3):227–237

  12. Rodríguez JJ, Kuncheva LI, Alonso CJ (2006) Rotation forest: a new classifier ensemble method. IEEE Trans Pattern Anal Mach Intell 28(10):1619–1630

    Article  Google Scholar 

  13. Banfield RE, Hall LO, Bowyer KW, Kegelmeyer WP (2007) A comparison of decision tree ensemble creation techniques. IEEE Trans Pattern Anal Mach Intell 29(1):173–180

    Article  Google Scholar 

  14. Rasheed S, Stashuk DW, Kamel MS (2008) Diversity-based combination of non-parametric classifiers for EMG signal decomposition. Pattern Anal Appl 11(3–4):385–408

    Google Scholar 

  15. Zhang CX, Zhang JS (2008) RotBoost: a technique for combining Rotation Forest and AdaBoost. Pattern Recog Lett 29(10):1524–1536

    Article  Google Scholar 

  16. Breiman L (1998) Arcing classifiers. Ann Statist 26(3):801–849

    Article  MATH  MathSciNet  Google Scholar 

  17. Optiz D, Maclin R (1999) Popular ensemble methods: an empirical study. J Artif Intell Res 11:169–198

    Google Scholar 

  18. Friedman J, Hastie H, Tibshirani R (2000) Additive logistic regression: a statistical view of boosting. Ann Statist 28(2):337–407

    Article  MATH  MathSciNet  Google Scholar 

  19. Webb GI (2000) Multiboosting: a technique for combining boosting and bagging. Mach Learn 40(2):159–196

    Article  Google Scholar 

  20. Meir R, Rätsch G (2003) An introduction to boosting and leveraging. In: Advances lectures on machine learning. Lecture notes in computer science, vol 2600, pp 118–183

  21. Jin R, Zhang J (2007) Multi-class learning by smoothed boosting. Mach Learn 67(3):207–227

    Article  Google Scholar 

  22. Schapire RE, Freund Y, Bartlett P, Lee WS (1998) Boosting the margin: a new explanation for the effectiveness of voting methods. Ann Statist 26(5):1651–1686

    Article  MATH  MathSciNet  Google Scholar 

  23. Bauer E, Kohavi R (1999) An empirical comparison of voting classification algorithms: bagging, boosting, and variants. Mach Learn 36(1–2):105–139

    Article  Google Scholar 

  24. Dietterich TG (2000) An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization. Mach Learn 40(2):139–157

    Article  Google Scholar 

  25. Breiman L, Friedman J, Olshen R, Stone C (1984) Classification and regression trees. Chapman and Hall, New York

    MATH  Google Scholar 

  26. Hansen LK, Salamon P (1990) Neural network ensembles. IEEE Trans Pattern Anal Mach Intell 12(10):993–1001

    Article  Google Scholar 

  27. Efron B, Tibshirani R (1993) An introduction to the bootstrap. Chapman and Hall, New York

    MATH  Google Scholar 

  28. Rodríguez JJ, Alonso CJ, Prieto OJ (2005) Bias and variance of rotation-based ensembles. In: Computational intelligence and bioinspired systems. Lecture notes in computer science, vol 3512, pp 779–786

  29. Kuncheva LI, Rodríguez JJ (2007) An experimental study on rotation forest ensembles. In: Multiple classsifier systems. Lecture notes in computer science, vol 4472, pp 459–468

  30. Kuncheva LI, Rodríguez JJ (2007) Classifier ensembles with a random linear oracle. IEEE Trans Knowl Data En 19(4):500–508

    Article  Google Scholar 

  31. Asuncion A, Newman DJ (2007) UCI machine learning repository. School of Information and Computer Science, University of California, University of California, Irvine. Available at: http://www.ics.uci.edu/~mlearn/MLRepository.htm

  32. Optiz DW, Shavlik JW (1996) Genarating accurate and diverse members of a neural-network ensemble. In: Touretzky DS, Mozer MC, Hasselmo MM (eds) Advances in neural information processing system, vol 8, pp 535–541

  33. Dietterich TG (1997) Machine-learning research: four current directions. AI Maga 18(4):97–136

    Google Scholar 

  34. Chandra A, Yao X (2006) Evolving hybrid ensembles of learning machines for better generalisation. Neurocomputing 69(1–2):686–700

    Article  Google Scholar 

  35. Krogh A, Vedelsby J (1995) Neural network ensembles, cross validation, and active learning. In: Tesauro G, Touretzky DS, Leen TK (eds) Advances in neural information processing system, vol 7, pp 231–238

  36. Lim TS, Loh WY, Shin YS (2000) A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms. Mach Learn 40(3):203–229

    Article  MATH  Google Scholar 

  37. Zhou ZH, Wu JX, Tang W (2002) Ensembling neural networks: many could be better than all. Artif Intell 137(1–2):239–263

    Article  MATH  MathSciNet  Google Scholar 

  38. Geman S, Bienenstock E, Doursat R (1992) Neural networks and the bias/variance dilemma. Neural Comput 4(1):1–58

    Article  Google Scholar 

  39. Kong EB, Dietterich TG (1995) Error-correcting output coding corrects bias and variance. In: Proceedings of the 12th international conference on machine learning. Morgan Kaufmann, San Franciso, pp 313–321

  40. Kohavi R, Wolpert D (1996) Bias plus variance decomposition for zero-one loss functions. In: Proceedings of the 13th international conference on machine learning, Bari, Italy. Morgan Kaufmann, San Franciso, pp 275–283

  41. Friedman JH (1997) On bias, variance, 0/1-loss, and the curse-of-dimensionality. Data Min Knowl Disc 1(1):55–77

    Article  Google Scholar 

  42. Quinlan JR (1996) Bagging, boosting, and C4.5. In: Proceedings of the 13th national conference on artificial intelligence, Portland, Ore, pp 725–730

  43. Miller RGJ (1991) Simultaneous statistical inference. Springer, New York

    Google Scholar 

  44. Maclin R, Optiz D (1997) An empirical evaluation of bagging and boosting. In: Proceedings of the 14th national conference on artificial intelligence. AAAI Press, Rhode Island, pp 546–551

  45. Rätsch G, Onoda T, Müller KR (2001) Soft margins for Adaboost. Mach Learn 42(3):287–320

    Article  MATH  Google Scholar 

  46. Margineantu DD, Dietterich TG (1997) Pruning adaptive boosting. In: Proceedings of the 14th international conference on machine learning. Morgan Kaufmann, San Franciso, pp 211–218

  47. Fleiss JL, Levin B, Paik MC (1981) Statistical methods for rates and proportions. Wiley, New York

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundations of China (No. 10531030 and 60675013) and National Basic Research Program of China (973 Program, No. 2007CB311002). The authors would like to thank the associate editor and two anonymous referees for their valuable comments and suggestions which lead to significant improvements of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Xia Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, CX., Zhang, JS. A variant of Rotation Forest for constructing ensemble classifiers. Pattern Anal Applic 13, 59–77 (2010). https://doi.org/10.1007/s10044-009-0168-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-009-0168-8

Keywords

Navigation