Skip to main content
Log in

Robust scale invariant target detection using the scale-space theory and optimization for IRST

  • Theoretical Advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

This paper presents a new small target detection method using scale invariant feature. Detecting small targets whose sizes are varying is very important to automatic target detection in infrared search and track (IRST). The conventional spatial filtering methods with fixed sized kernel show limited target detection performance for incoming targets. The scale invariant target detection can be defined as searching for maxima in the 3D (x, y, and scale) representation of an image with the Laplacian function. The scale invariant feature can detect different sizes of targets robustly. Experimental results with real FLIR images show higher detection rate and lower false alarm rate than conventional methods. Furthermore, the proposed method shows very low false alarms in scan-based IR images than conventional filters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Warren RC (2002) Detection of distant airborne targets in cluttered backgrounds in infrared image sequences, Ph.D. Thesis, University of South Australia

  2. Barnett J (1989) Statistical analysis of median subtraction filtering with application to point target detection in infrared backgrounds. Proc SPIE 1050:10–15

    Google Scholar 

  3. Tom VT et al (1993) Morphology-based algorithm for point target detection in infrared backgrounds. Proc SPIE 1954:2–11

    Article  Google Scholar 

  4. Leung H, Young A (2000) Small target detection in clutter using recursive nonlinear prediction. IEEE Trans Aerosp Electron Syst 36(2):713–718

    Article  Google Scholar 

  5. Deshpande SD et al (1999) Max-mean and max-median filters for detection of small-targets. Proc SPIE 3809:74–83

    Article  Google Scholar 

  6. Nitzberg R et al (1979) Spatial filtering techniques for infrared (IR) sensors. Proc SPIE 178:40–58

    Google Scholar 

  7. Schmidt WAC (1990) Modified matched filter for cloud clutter suppression. Pattern Anal Mach Intell 12(6):594–600

    Article  Google Scholar 

  8. Gregoris DJ et al (1994) Detection of dim targets in FLIR imagery using multiscale transforms. Proc SPIE 2269:62–71

    Article  Google Scholar 

  9. Boccignone G, Chianese A, Picariello A (2000) Using Renyi’s information and wavelets for target detection: an application to mammograms. Pattern Anal Appl 3(4):303–313

    Article  MathSciNet  Google Scholar 

  10. Lindeberg T (1998) Feature detection with automatic scale selection. Int J Comput Vis 30(2):77–116

    Google Scholar 

  11. Ardouin JP (1993) Point source detection based on point spread function symmetry. Opt Eng 32(9):2156–2164

    Article  Google Scholar 

  12. Mikolajczyk K, Schmid C Indexing based on scale invariant interest points. In: 8th IEEE international conference on computer vision (ICCV’01), vol 1, pp 525–531

  13. Kim S, Kweon IS (2006) Biologically motivated perceptual feature: generalized robust invariant feature (ACCV’06), LNCS, vol 3852, pp 305–314

  14. Lowe DG (1999) Object recognition from scale invariant features. In: 7th IEEE international conference on computer vision (ICCV’99), pp 1150–1157

  15. Se S et al (2001) Vision-based mobile robot localization using scale-invariant features. In: IEEE international conference on robotics and automation (ICRA’01), pp 2051–2058

  16. Cadieu C et al (2007) A model of V4 shape selectivity and invariance. J Neurophysiol 98:1733–1750

    Article  Google Scholar 

  17. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110

    Article  Google Scholar 

  18. Li J, Shen Z, Yang W Small target detection in noisy image sequences. In: IEEE aerospace and electronics conference, vol 2, pp 868–872

  19. da Silva Tavares PJ (2007) Accurate subpixel corner detection on planar camera calibration targets. Opt Eng. doi:10.1117/1.2790926

  20. Gerald CF, Wheatley PO (1994) Applied numerical analysis, 5th edn. Addison-Wesley, New York

  21. Comaniciu D, Meer P (2002) Mean shift: a robust approach toward feature space analysis. IEEE Trans Pattern Anal Machine Intell 24(5):603–619

    Article  Google Scholar 

  22. Agarwal S, Roth D (2002) Learning a sparse representation for object detection. In: European conference on computer vision (ECCV’02), pp 113–130

Download references

Acknowledgments

This research was supported by Yeungnam University research grants in 210-A-054-014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sungho Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S., Lee, JH. Robust scale invariant target detection using the scale-space theory and optimization for IRST. Pattern Anal Applic 14, 57–66 (2011). https://doi.org/10.1007/s10044-010-0190-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-010-0190-x

Keywords

Navigation