Skip to main content
Log in

Centroid Iteration algorithm for image tracking

  • Short Paper
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

A simple and elegant tracking algorithm called Centroid Iteration algorithm is proposed. It employs a new Background-Weighted similarity measure which can greatly reduce the influence from the pixels shared by the target template and background on localization. Experiments demonstrated the Background-Weighted measure performs much better than the other similarity measures like Kullback–Leibler divergence, Bhattacharyya coefficient and so on. It has been proved that this measure can compute the similarity value contribution of each pixel in the target candidate, based on which, a new target search method called Centroid Iteration is constructed. The convergence of the method has been demonstrated. Theory analysis and visual experiments both validated the new algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Comaniciu D, Ramesh V, Meer P (2003) Kernel-based object tracking. IEEE Trans Pattern Anal Mach Intel 25(5):564–577

    Article  Google Scholar 

  2. Comaniciu D, Ramesh V, Meer P (2000) Real-time tracking of non-rigid objects using mean shift. Proc IEEE Conf Comput Vis Pattern Recognit II:142–149

    Article  Google Scholar 

  3. Liu T, Chen H (2004) Real-time tracking using trust-region methods. IEEE Trans Pattern Anal Mach Intel 26(3):397–402

    Article  Google Scholar 

  4. Liu T, Chen H (2001) Trust-region methods for real-time tracking. In: Proceedings of eighth IEEE international conference on computer vision, 2001. 2:717–722

  5. Boykov Y, Huttenlocher D (2000) Adaptive Bayesian recognition in tracking rigid objects. Proc IEEE Conf Comput Vis Pattern Recognit 2:697–704

    Google Scholar 

  6. Rosales R, Sclaroff S (1999) 3D trajectory recovery for tracking multiple objects and trajectory guided recognition of actions. Proc IEEE Conf Comput Vis Pattern Recognit, pp 117–123

  7. MacCormick J, Blake A (2000) A probabilistic exclusion principle for tracking multiple objects. Int J Comput Vis 39(1):57–71

    Article  MATH  Google Scholar 

  8. Li B, Chellappa R (2000) Simultaneous tracking and verification via sequential posterior estimation. Proc IEEE Conf Comput Vis Pattern Recognit 2:110–117

    Article  Google Scholar 

  9. Bar-Shalom Y, Fortmann T (1988) Tracking and data association. Academic Press

  10. Horn BKP, Schunck BG (1981) Determining optical flow. Artif Intell 17:185–203

    Article  Google Scholar 

  11. Duncan JH, Chou T (1992) On the detection of motion and computation of optical flow. IEEE Trans Pattern Anal Machine Intell 14(3):346–352

    Article  Google Scholar 

  12. Lim S, Apostolopoulos JG, Gamal AE (2005) Optical flow estimation using temporally oversampled video. IEEE Trans Image Process 14:1074–1087

    Article  Google Scholar 

  13. Doucet A, Godsill S, Andrieu C (2000) On sequential Monte Carlo sampling methods for Bayesian filtering. Stat Comput 10(3):197–208

    Article  Google Scholar 

  14. Isard M, Blake A (1998) Condensation-conditional density propagation for visual tracking. Int J Comput Vis 29(1):5–28

    Article  Google Scholar 

  15. Arulampalam S, Maskell S, Gordon N, Clapp T (2002) A tutorial on particle filters for on-line non-linear/non-Gaussian Bayesian tracking. IEEE Trans Signal Process 50(2):174–189

    Article  Google Scholar 

  16. Julier S, Uhlmann J (1997) A new extension of the Kalman filter to nonlinear systems. Proc SPIE 3068:182–193

    Article  Google Scholar 

  17. Yang C, Duraiswami R, Davis L (2005) Efficient mean-shift tracking via a new similarity measure. Proc IEEE Conf Comput Vis Pattern Recognit 1:176–183

    Google Scholar 

  18. Wang L, Zhang Y, Feng J (2005) On the Euclidean distance of images. IEEE Trans Pattern Anal Mach Intell 27(8):1334–1339

    Article  Google Scholar 

Download references

Acknowledgments

The paper is supported by National Natural Science Foundation of China under Grant Nos. 61105034 and 60905044, Research Fund for the Doctoral Program of Higher Education of China under Grant No. 20100201120040.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Na Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, N., Feng, Z. Centroid Iteration algorithm for image tracking. Pattern Anal Applic 15, 163–174 (2012). https://doi.org/10.1007/s10044-011-0252-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-011-0252-8

Keywords

Navigation