Skip to main content
Log in

Automated classification of touching or overlapping M-FISH chromosomes by region fusion and homolog pairing

  • Theoretical Advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

Automated separation and classification of touching or overlapping chromosomes in a metaphase image is a critical step in computer-aided chromosome analysis. The advent of the multiplex fluorescence in situ hybridization (M-FISH) technology enables multi-spectral chromosome image with rich spectral information and DAPI image with abundant texture information. This paper presents a fusion classification scheme to improve the segmentation of overlapping and touching chromosomes. First, the texture and spectral information is fused to partition the chromosome cluster into a series of homologous regions. Then a graph-theoretical classification and pairing method is proposed to resolve any remaining ambiguity of the aforementioned separation process. Experiment results demonstrate that the proposed method outperforms conventional multi-spectral classification methods in touching and overlapping chromosome separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Agam G, Dinstein IH (1997) Geometric separation of partially overlapping nonrigid objects applied to automatic chromosome classification. IEEE Trans Pattern Anal Mach Intell 19(11):1212–1222

    Article  Google Scholar 

  2. Maierrhofer C, Jentsch I, Lederer G et al (2002) “Multicolor FISH in two and three Dimensions for Clastogenic Analysis”. Mutagenesis 17(6):523–527

    Article  Google Scholar 

  3. Lee C, Gisselsson D, Jin C et al (2001) Limitations of chromosome classification by multicolor karyotyping. Am J Hum Genet 68(4):1043–1047

    Article  Google Scholar 

  4. Schwartzkopf WC, Bovik AC, Evans BL (2005) Maximum likelihood techniques for joint segmentation-classification of multi-spectral chromosome images. IEEE Trans Med Imaging 24(12):1593–1610

    Article  Google Scholar 

  5. Biyani P, Wu X, Sinha A (2005) Joint classification and pairing of human chromosomes. IEEE Trans Computational Biol Bioinfo 2(2):102–109

    Article  Google Scholar 

  6. Lerner B (1998) Toward a completely automatic neural-network-based human chromosome analysis. IEEE Trans Trans Syst Man Cybern Part B, 28(4): 544–552

    Google Scholar 

  7. Stanley RJ, Keller JM, Gader P, Caldwell CW (1998) Data-driven homologue matching for chromosome identification. IEEE Trans Med Imaging 17(3):451–462

    Article  Google Scholar 

  8. Carothers A, Piper J (1994) Computer-aided classification of human chromosomes: a review. Stat Comp 4(3):161–171

    Article  Google Scholar 

  9. Ji L (1994) Fully automatic chromosome segmentation. Cytometry 17:196–208

    Article  Google Scholar 

  10. Wang Y, Castleman KR (2005) Normalization of multicolor fluorescence in situ hybridization (M-FISH) images for improving color karyotyping. Cytometry 64:101–109

    Article  Google Scholar 

  11. Garini Y, Gil A, Bar-Am I et al (1999) Signal to noise analysis of multiple color fluorescence imaging microscopy. Cytometry 35:214–226

    Article  Google Scholar 

  12. Gariniy Y, Macvillez M, Manoir S et al (1996) Spectral karyotyping. Bioimaging 4:65–72

    Article  Google Scholar 

  13. Choi H, Bovik AC, Castleman KR (2006) Maximum-likelihood decomposition of overlapping and touching M-FISH chromosomes using geometry, size and color information. In: Proceedings of the 28th IEEE EMBS annual international conference, pp 3130–3133

  14. Grisan E, Poletti E, Ruggeri A (2009) Automatic segmentation and disentangling of chromosomes in Q-Band prometaphase images. IEEE Trans Info Technol Biomed 13(4):575–581

    Article  Google Scholar 

  15. Karvelis PS, Fotiadis DI (2008) A region based decorrelation stretching method: application to multispectral chromosome classification. In: 15th IEEE international conference on image processing, pp 1456–1459

  16. Sampat MP, Bovik AC, Aggarwal JK et al (2005) Supervised parameter and non-parameteric classification of chromosome images. Pattern Recogn 38:1209–1223

    Article  Google Scholar 

  17. Popescu M, Gader P, Keller J et al (1999) Automatic karyotyping of metaphase cells with overlapping chromosomes. Comput Biol Med 29(1):61–82

    Article  Google Scholar 

  18. Wu X, Biyani P, Dumitrescu S (2004) Globally optimal classification and pairing of human chromosomes. In: Proceedings of the 26th annual international conference of the IEEE EMBS. pp 2789–2792

  19. Shah S (2005) Multispectral integration for segmentation of chromosome images. CAIP 2005, LNCS 3691, pp 506–513

  20. Karvelis PS, Tzallas AT, Fotiadis DI et al (2008) A multichannel watershed-based segmentation method for multispectral chromosome classification. IEEE Trans Med Imaging 27(5):697–708

    Article  Google Scholar 

  21. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans. Trans. Syst Man Cybern 9(1):62–66

    Article  MathSciNet  Google Scholar 

  22. Sund T, Eilertsen K (2003) An algorithm for fast adaptive image binarization with applications in radiotherapy imaging. IEEE Trans Med Imaging 22(1):22–28

    Article  Google Scholar 

  23. Trier OD, Taxt TM (1995) Evaluation of binarization methods for document images. IEEE Trans Pattern Anal Mach Intell 17(3):312–315

    Article  Google Scholar 

  24. Cai W, Chen S, Zhang D (2007) Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation. Pattern Recogn 40(3):825–838

    Google Scholar 

  25. Ali M, Dooley L Karmakar G (2005) Fuzzy image segmentation combing ring and elliptic shaped clustering algorithms. In: International conference on information technology: coding and computing (ITCC’05), vol 2, pp 118–122

  26. Almohamad H, Duffuaa S (1993) A linear programming approach for the weighted graph matching problem. IEEE Trans Pattern Anal Mach Intell 15(5):522–525

    Article  Google Scholar 

  27. William G, Tarjan R, Tsioutsiouliklis K (2004) Graph clustering and minimum cut trees. Internet Math 1(4):385–408

    Google Scholar 

  28. Choi H, Castleman KR, Bovik AC (2006) Segmentation and fuzzy-logic classification of M-FISH. In: 2006 IEEE international conference on image processing, pp 69–72

  29. Ramanath R, Snyder WE, Qi H (2003) Eigenviews for object recognition in multispectral imaging systems. In: Proceedings of the 32nd applied imagery pattern recognition workshop (AIPR’03), pp 2003

  30. Lu Y, Morris J, Edwards P, Shipley J (2000) Evaluation of 24-color multifluor-fluorescence in situ hybridization (M-FISH) karyotyping by comparison with reverse chromosome painting of the human breast cancer cell line T-47D. Chromosome Res 8:127–132

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China under Grants No. 61071172, 60602056 and 60634030, Aviation Science Funds 20105153022, Sciences Foundation of Northwestern Polytechnical University No. JC200941 and No. JC201251, and the China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongqiang Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Y., Kong, S.G. Automated classification of touching or overlapping M-FISH chromosomes by region fusion and homolog pairing. Pattern Anal Applic 16, 31–39 (2013). https://doi.org/10.1007/s10044-012-0301-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-012-0301-y

Keywords

Navigation