Skip to main content

Advertisement

Log in

Automatic segmentation of brain MRI through stationary wavelet transform and random forests

  • Theoretical Advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

This paper introduces a new brain Magnetic Resonance Imaging segmentation framework that combines a powerful multiresolution/multiscale image analysis technique with a robust weakly used ensemble learning paradigm. Firstly, the image is proceeded with the anisotropic diffusion filter to reduce the noise. Then, Stationary Wavelet Transform (SWT) is applied to get multiresolution/multiscale texture information. During the SWT stage, three levels of decomposition are used and four statistical features are computed around every voxel of each resulting sub-band. The feature extraction step allows to describe each voxel through a feature vector of 60 dimensions. Finally, the extracted features are used to feed a Random Forest classifier. To train and test this classifier, we make use of the Internet Brain Segmentation Repository database. The achieved results showed that our system outperforms other state of art methods for the segmentation of Gray Matter, White Matter, and Cerebrospinal Fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Robb RA, Ekeland I (1999) Biomedical imaging. Visualization and analysis. Wiley-Liss, USA

    Google Scholar 

  2. Rizzo G, Tonon C, Lodi R (2012) Looking into the brain: how can conventional, morphometric and functional MRI help in diagnosing and understanding PD? Basal Ganglia 2:175–182

    Article  Google Scholar 

  3. Laatsch L (2007) The use of functional MRI in traumatic brain injury diagnosis and treatment. Phys Med Rehabil Clin N Am 18:69–85

    Article  Google Scholar 

  4. Sahraian MA, Eshaghi A (2010) Role of MRI in diagnosis and treatment of multiple sclerosis. Clin Neurol Neurosurg 112:609–615

    Article  Google Scholar 

  5. Saconn PA, Shaw EG, Chan MD, Squire SE, Johnson AJ, McMullen KP, Tatter SB, Ellis TL, Lovato J, Bourland JD, Ekstrand KE, DeGuzman AF, Munley MT (2010) Use of 3.0-T MRI for stereotactic radiosurgery planning for treatment of brain metastases: a single-institution retrospective review. Int J Radiat Oncol Biol Phys 78:1142–1146

    Article  Google Scholar 

  6. Bagadia A, Purandare H, Misra BK, Gupta S (2011) Application of magnetic resonance tractography in the perioperative planning of patients with eloquent region intra-axial brain lesions. J Clin Neurosci 18:633–639

    Article  Google Scholar 

  7. Butler C, Van Erp W, Bhaduri A, Hammers A, Heckemann R, Zeman A (2013) Magnetic resonance volumetry reveals focal brain atrophy in transient epileptic amnesia. Epilepsy Behav 28:363–369

    Article  Google Scholar 

  8. Paling SM, Williams ED, Barber R, Burton EJ, Crum WR, Fox NC, O’Brien JT (2004) The application of serial MRI analysis techniques to the study of cerebral atrophy in late-onset dementia. Med Imag Anal 8:69–79

    Article  Google Scholar 

  9. Clifford RJ Jr, Petersen RC, Grundman M, Jin S, Gamst A, Ward CP, Sencakova D, Doddy RS, Thal LJ (2008) Longitudinal MRI findings from the vitamin E and donepezil treatment study for MCI. Neurobiol Aging 29:1285–1295

    Article  Google Scholar 

  10. Crinion J, Holland AL, Copland DA, Thomson CK, Hillis AE (2013) Neuroimaging in aphasia treatment research: quantifying brain lesions after stroke. NeuroImage 73:208–214

    Article  Google Scholar 

  11. Smith-Bindman R, Miglioretti DL, Johnson E, Lee C, Feigelson HS, Flynn M, Greenlee RT, Kruger RL, Hornbrook MC, Roblin D, Solberg LI, Vanneman N, Weinmann S, Williams AE (2012) Use of diagnostic imaging studies and associated radiation exposure for patients enrolled in large integrated health care systems, 1996–2010. J Am Med Assoc 307:2400–2409

    Article  Google Scholar 

  12. Mohan J, Krishnaveni V, Guo Y (2014) A survey on the magnetic resonance image denoising methods. Biomed Signal Process Control 9:56–69

    Article  Google Scholar 

  13. Belaroussi B, Milles J, Carme S, Zhu YM, Benoit-Cattin H (2006) Intensity non-uniformity correction in MRI: existing methods and their validation. Med Imag Anal 10:234–246

    Article  Google Scholar 

  14. Thomas BA, Erlandsson K, Reilhac A, Bousse A, Kazantsev D, Pedemonte S, Vunckx K, Arridge S, Ourselin S, Hutton BF (2012) A comparison of the options for brain partial volume correction using PET/MRI. In: IEEE nuclear science symposium and medical imaging conference 2902–2906

  15. Power JD, Mitra A, Laumann TO, Snyder AZ, Schlaggar BL, Petersen SE (2014) Methods to detect, characterize, and remove motion artifact in resting state fMRI. NeuroImage 84:320–341

    Article  Google Scholar 

  16. Balfar MA (2013) New spatial based MRI image de-noising algorithm. Artif Intell Rev 39:225–235

    Article  Google Scholar 

  17. Perona P, Malik J (1990) Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell 12:629–639

    Article  Google Scholar 

  18. Shapiro LG, Stockman GC (2001) Computer vision. Prentice-Hall, New Jersey

    Google Scholar 

  19. Shanthi KJ, Kumar MS (2007) Skull stripping and automatic segmentation of brain MRI using seed growth and threshold techniques. In: International conference on intelligent and advanced systems. pp 422–426

  20. Selvaraj D, Dhanasekaran R (2010) Novel approach for segmentation of brain magnetic resonance imaging using intensity based thresholding. In: IEEE international conference on communication control and computing technologies. pp 502–507

  21. Szegö G (1967) Orthogonal polynomials. American Mathematical Society, Providence

    Google Scholar 

  22. Matheron G (1975) Random sets and integral geometry. John Wiley & Sons Inc, USA

    MATH  Google Scholar 

  23. Serra J (1982) Image analysis and mathematical morphology. Academic Press, Orlando

    MATH  Google Scholar 

  24. Digabel H, Lantujoul C (1978) Iterative algorithm. In: 2nd European symposium on quantitative analysis of microstructures in materials sciences, biology and medicine. vol 1:85–99

  25. Stokking R, Vinchen KL, Viergever MA (2000) Automatic morphology-based brain segmentation (MBRASE) from MRI-T1 data. NeuroImage 12:726–738

    Article  Google Scholar 

  26. Hohne KH, Hanson WA (1992) Interactive 3D segmentation of MRI and CT volumes using morphological operations. J Comput Assist Tomogr 16:285–294

    Article  Google Scholar 

  27. Peng S, Gu L (2006) A novel implementation of watershed transform using multi-degree immersion simulation. In: 27th Annual international conference of the engineering in medicine and biology society. pp 1754–1757

  28. Dempster A, Laird N, Rubin D (1977) Maximum likelihood from incomplete data via the EM algorithm. J Roy Stat Soc Ser B Methodol 39:1–38

    MATH  MathSciNet  Google Scholar 

  29. Wells WM III, Grimson WEL, Kikinis R, Jolesz FA (1996) Adaptive segmentation of MRI data. IEEE Trans Med Imag 15:429–442

    Article  Google Scholar 

  30. Greenspan H, Ruf A, Goldberger J (2006) Constrained Gaussian mixture model framework for automatic segmentation of MR brain images. IEEE Trans Med Imag 25:1233–1245

    Article  Google Scholar 

  31. Zhu F, Song Y, Chen J (2010) Brain MR image segmentation based on Gaussian mixture model with spatial information. In: 3rd International congress on image and signal processing. 3:1346–1350

  32. Geman S, Geman D (1984) Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell PAMI 6:721–741

    Article  MATH  Google Scholar 

  33. Zhang Y, Brady M, Smith S (2001) Segmentation of brain MR images through a hidden Markov random field model and the Expectation–Maximization algorithm. IEEE Trans Med Imag 20:45–57

    Article  Google Scholar 

  34. Yousefi S, Zahedi M, Azmi R (2010), 3D MRI brain segmentation based on MRF and hybrid of SA and IGA. In: 17th Iranian conference of, biomedical engineering. pp 1–4

  35. Kirkpatrick S, Gellat CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671–680

    Article  MATH  MathSciNet  Google Scholar 

  36. Zhou Y, Bai J (2007) Atlas-based fuzzy connectedness segmentation and intensity nonuniformity correction applied to brain MRI. IEEE Trans Biomed Eng 54:122–129

    Article  Google Scholar 

  37. Luo Y, Chung ACS (2011) An atlas-based deep brain structure segmentation method: from coarse positioning to fine shaping. In: IEEE International conference on acoustics, speech and signal processing. pp 1085–1088

  38. Bezdek J (1981) Pattern recognition with fuzzy objective function algorithms. Kluwer Academic Publishers, USA

    Book  MATH  Google Scholar 

  39. Comaniciu D, Meer P (2002) Mean shift : a robust approach toward feature space analysis. IEEE Trans Pattern Anal Mach Intell 24:603–619

    Article  Google Scholar 

  40. MacQueen J (1967) Some methods for classification and analysis of multivariate observations. Fifth Berkeley Symp Math Stat Prob 1:281–297

    MathSciNet  Google Scholar 

  41. Klir GJ, Yuan B (1995) Fuzzy sets and fuzzy logic: theory and applications. Prentice Hall, New Jersey

    MATH  Google Scholar 

  42. Shen S, Sandham W, Granat M, Sterr A (2005) MRI fuzzy segmentation of brain tissue using neighborhood attraction with neural-network optimization. IEEE Trans Inf technol Biomed 9:459–467

    Article  Google Scholar 

  43. Mayer A, Greenspan H (2009) An adaptive mean-shift framework for MRI brain segmentation. IEEE Trans Med Imag 28:1238–1250

    Article  Google Scholar 

  44. Georgescu B, Shimshoni I, Meer P (2003) Mean shift based clustering in high dimensions: a texture classification example. In: 9th IEEE International conference on computer vision 1:456–463

  45. Kass M, Witkin A, Terzopoulos D (1988) Snakes : active contour models. Int J Comput Vis 1:321–331

    Article  Google Scholar 

  46. Freifeld O, Greenspan H, Goldberger J (2007) Lesion detection in noisy MR brain images using constrained GMM and active contours. In: 4th IEEE international symposium on biomedical imaging: from Nano to Macro. pp 596–599

  47. Caselles V, Catte F, Coll T, Dibos F (1993) A geometric model for active contours in image processing. Numerische Mathematik 66:1–31

    Article  MATH  MathSciNet  Google Scholar 

  48. Ciofolo C, Barillot C, Hellier P (2004) Combining fuzzy logic and level set methods for 3D MRI brain segmentation. IEEE Intern Symp Biomed Imag 1:161–164

    Google Scholar 

  49. Simpson P (1999) Artificial neural systems : foundations, paradigms, applications, and implementations. Pergamon Press, USA

    Google Scholar 

  50. Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors. Nature 323:533–536

    Article  Google Scholar 

  51. Emambakhsh M, Sedaaghi MH (2009) Automatic MRI brain segmentation using local features, self-organizing maps, and watershed. In: IEEE International conference on signal and image processing applications. pp 123–128

  52. Kohonen T (1982) Self-organized formation of topologically correct feature maps. Biol Cybern 43:59–69

    Article  MATH  MathSciNet  Google Scholar 

  53. Zheng B, Yi Z (2012) A new method based on the CLM of the LV RNN for brain MR image segmentation. Digit Signal Process 22:497–505

    Article  MathSciNet  Google Scholar 

  54. Retter H (1990) A spatial approach for feature linking. Intern Neural Netw Conf 2:898–901

    Article  Google Scholar 

  55. Vapnik V (1999) The nature of statistical learning theory. Springer-Verlag, New York

    Google Scholar 

  56. Kasiri K, Kazemi K, Dehghani MJ, Helfroush MS (2010) Atlas-based segmentation of brain MR images using least square support vector machines. In: 2nd International conference on image processing theory tools and applications. pp 306–310

  57. Bauer S, Nolte LP, Reyes M (2011) Fully automatic segmentation of brain tumor images using support vector machine classification in combination with hierarchical conditional random field regularization. Lecture Notes in Computer Science, vol 6893. Springer, Berlin, pp 354–361

    Google Scholar 

  58. Freund Y, Schapire R (1997) A decision-theoretic generalization of online learning and an application to boosting. J Comput Syst Sci 55:119–139

    Article  MATH  MathSciNet  Google Scholar 

  59. Quddus A, Fieguth P, Basir O (2005) Adaboost and support vector machines for white matter lesion segmentation in MR Images. In: 27th Annual international conference of the engineering in medicine and biology society. pp 463–466

  60. Xuan X, Liao Q (2007) Statistical structure analysis in MRI brain tumor segmentation. In: Fourth international conference on image and graphics. pp 421–426

  61. Breiman L (2001) Random forests. Mach Learn 45:5–32

    Article  MATH  Google Scholar 

  62. Caruana R, Karampatziakis N, Yassenalina A (2008) An empirical evaluation of supervised learning in high dimensions. In: 25th international conference on machine learning. pp 96–103

  63. Iglesias JE, Liu CY, Thomson P, Tu Z (2010) Agreement-based semi-supervised learning for skull stripping. Lecture Notes in Computer Science, vol 6363. Springer, Berlin, pp 147–154

    Google Scholar 

  64. Smith S (2002) Fast robust automated brain extraction. Hum Brain Mapp 17:143–155

    Article  Google Scholar 

  65. Segonne F, Dale AM, Busa E, Glessner M, Salat D, Hahn HK, Fischl B (2004) A hybrid approach to the skull stripping problem in MRI. NeuroImage 22:1060–1075

    Article  Google Scholar 

  66. Akselrod-Ballin A, Galun M, Gomori JM, Filippi M, Valsasina P, Basri R, Brandt A (2009) Automatic segmentation and classification of multiple sclerosis in multichannel MRI. IEEE Trans Biomed Eng 56:2461–2469

    Article  Google Scholar 

  67. Mallat SG (1989) A theory for multiresolution signal decomposition : the wavelet representation. IEEE Trans Pattern Anal Mach Intell 11:674–693

    Article  MATH  Google Scholar 

  68. Demirhan A, Güler İ (2011) Combining stationary wavelet transform and self-organizing maps for brain MR image segmentation. Eng Appl Artif Intell 24:358–367

    Article  Google Scholar 

  69. Nason GP, Silverman BW (1995) The stationary wavelet transform and some statistical applications. Wavelets Stat 103:281–299

    Article  Google Scholar 

  70. Kohonen T (2002) The self-organizing maps. Springer-Verlag, Germany

    Google Scholar 

  71. Yazdan-Shahmorad A, Soltanian-Zadeh H, Zoroofi RA (2004) MRSI brain tumor characterization using wavelet and wavelet packets feature spaces and artificial neural networks. In: 26th annual international conference of the IEEE engineering in medicine and biology society 1:1810–1813

  72. Center for Morphometric Analysis (2012) Internet brain segmentation repository. http://www.cma.mgh.harvard.edu/ibsr/. Accessed June 2012

  73. Wu Y, Wang X, Liao G (2006) SAR images despeckling via bayesian fuzzy shrinkage based on stationary wavelet transform. Wavelet analysis and applications. Applied and numerical harmonic analysis. Birkhäuser Verlag, Switzerland, pp 407–417

    Google Scholar 

  74. Schapire RE, Freund Y (2012) Boosting: foundations and algorithms. The MIT Press, London

    Google Scholar 

  75. Breiman L (1996) Bagging predictors. Mach Learn 24:123–140

    MATH  MathSciNet  Google Scholar 

  76. Segal MR (2003) Machine learning benchmarks and random forest regression. Kluwer Academic Publishers, Netherlands

    Google Scholar 

  77. Berthold MR, Borgelt C, Höppner F, Klawonn F (2010) Guide to intelligent data analysis. How to intelligently make sense of real data. Springer-Verlag, London

    Book  MATH  Google Scholar 

  78. Mann HB, Whitney DR (1947) On a test of whether one of two random variables is stochastically larger than the other. Ann Math Stat 18:1–164

    Article  MathSciNet  Google Scholar 

  79. Kruskal WH, Wallis WA (1952) Use of ranks in one-criterion variance analysis. J Am Stat Assoc 47:583–621

    Article  MATH  Google Scholar 

  80. Hochberg Y, Tamhane AC (1987) Multiple comparison procedures. John Wiley & Sons Inc, Canada

    Book  MATH  Google Scholar 

  81. Reyes-Aldasoro CC, Bhalerao A (2006) The Bhattacharyya space for feature selection and its application to texture segmentation. Pattern Recogn 39:812–826

    Article  MATH  Google Scholar 

  82. Puig D, Garcia MA, Melendez J (2010) Application-independent feature selection for texture classification. Pattern Recogn 43:3282–3297

    Article  MATH  Google Scholar 

  83. Ait Kerroum M, Hammouch A, Aboutajdine D (2010) Textural feature selection by joint mutual information based on Gaussian mixture model for multispectral image classification. Pattern Recogn Lett 31:1168–1174

    Article  Google Scholar 

  84. Cerasa A, Bilotta E, Augimeri A, Cherubini A, Pantano P, Zito G, Lanza P, Valentino P, Gioia MC, Quattrone A (2012) A cellular neural network methodology for the automated segmentation of multiple sclerosis lesions. J Neurosci Methods 203:193–199

    Article  Google Scholar 

  85. Jiang J, Wu Y, Huang M, Yang W, Chen W, Feng Q (2013) 3D brain tumor segmentation in multimodal MR images based on learning population- and patient-specific feature sets. Comput Med Imaging Graph 37:512–521

    Article  Google Scholar 

  86. Thapaliya K, Pyun JY, Park CS, Kwon GR (2013) Level set method with automatic selective local statistics for brain tumor segmentation in MR images. Comput Med Imaging Graph 37:522–537

    Article  Google Scholar 

  87. Bian W, Hess CP, Chang SM, Nelson SJ, Lupo JM (2013) Computer-aided detection of radiation-induced cerebral microbleeds on susceptibility-weighted MR images. NeuroImage Clin 2:282–290

    Article  Google Scholar 

  88. Steenwijk MD, Pouwels PJW, Daams M, van Dalen JW, Caan MWA, Richard E, Barkhof F, Vrenken H (2013) Accurate white matter lesion segmentation by k nearest neighbor classification with tissue type priors (kNN-TTPs). NeuroImage Clin 3:462–469

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Mokhtar Bendib.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bendib, M.M., Merouani, H.F. & Diaba, F. Automatic segmentation of brain MRI through stationary wavelet transform and random forests. Pattern Anal Applic 18, 829–843 (2015). https://doi.org/10.1007/s10044-014-0373-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-014-0373-y

Keywords

Navigation